分析:構(gòu)造函數(shù)y1=log2x,y2=2x,y=-x+3,則由y=2x與y=log2x的圖象關(guān)于y=x對(duì)稱可得,y=log2x與y=-x+3的交點(diǎn)與y=2x與y=-x+3的交點(diǎn)關(guān)于y=x對(duì)稱,且對(duì)稱點(diǎn)是y=-x+3與y=x的交點(diǎn),求出對(duì)稱點(diǎn)即可求解
解答:解:令y
1=log
2x,y
2=2
x,y=-x+3
由互為反函數(shù)的性質(zhì)可得,y=2
x與y=log
2x的圖象關(guān)于y=x對(duì)稱
因?yàn)閥=log
2x與y=-x+3的交點(diǎn)與y=2
x與y=-x+3的交點(diǎn)關(guān)于y=x對(duì)稱,且對(duì)稱點(diǎn)是y=-x+3與y=x的交點(diǎn)
由
可得x=y=
,即對(duì)稱點(diǎn)(
,)
a+b=3,log
2a+2
b=3
故答案為:3,3
點(diǎn)評(píng):本題主要考查了指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì)及函數(shù)與方程的相互轉(zhuǎn)化,體現(xiàn)了數(shù)形結(jié)合的思想及轉(zhuǎn)化思想在解題中的應(yīng)用.