分析 運(yùn)用三角形的重心的性質(zhì)和向量的三角形法則及向量的中點(diǎn)表示,以及向量的平方即為模的平方,即可化簡求得.
解答 解:由于G為△ABC的重心,
連接AG,延長交BC于D,
則$\overrightarrow{AG}$=$\frac{2}{3}$$\overrightarrow{AD}$=$\frac{2}{3}$×$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)
=$\frac{1}{3}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),
則有$\overrightarrow{AG}$•$\overrightarrow{AB}$=$\frac{1}{3}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)•$\overrightarrow{AB}$
=$\frac{1}{3}$($\overrightarrow{AB}$2+$\overrightarrow{AB}$•$\overrightarrow{AC}$)
=$\frac{1}{3}$(9-$\overrightarrow{AB}$•$\overrightarrow{AC}$)=5.
可得$\overrightarrow{AB}$•$\overrightarrow{AC}$=9-15=-6.
故答案為:-6.
點(diǎn)評 本題考查平面向量的數(shù)量積的定義和性質(zhì),考查三角形的重心的性質(zhì)及向量中點(diǎn)的向量表示,考查運(yùn)算能力,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,0) | B. | (2,0) | C. | (-1,0)或(2,0) | D. | (1,0)或(2,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com