【題目】已知橢圓的離心率為,,分別為橢圓的左、右焦點(diǎn),且.
(1)求橢圓的方程;
(2)設(shè)為橢圓上任意一點(diǎn),以為圓心,為半徑作圓,當(dāng)圓與直線:有公共點(diǎn)時(shí),求面積的最大值.
【答案】(1);(2)
【解析】
(1)根據(jù)離心率及焦距即可求出橢圓方程(2)設(shè)點(diǎn)M的坐標(biāo)為(x0,y0),表示出圓的半徑,因?yàn)閳A與直線有公共點(diǎn),所以M到直線距離小于等于半徑,即可求出x0的取值范圍,進(jìn)而求出|y0|的最大值,即可求三角形面積的最大值.
(1)∵2c=2,且=,∴c=1,a=2,∴b2=a2-c2=3.
則橢圓C的方程為+=1.
(2)設(shè)點(diǎn)M的坐標(biāo)為(x0,y0),則+=1.∵F1(-1,0),=4,∴直線l的方程為x=4.∵圓M與l有公共點(diǎn),∴M到l的距離4-x0小于或等于圓的半徑R.
∵R2=|MF1|2=(x0+1)2+y,∴(4-x0)2≤(x0+1)2+y,即y+10x0-15≥0.
又y=3,∴3-+10x0-15≥0,解得≤x0≤12,又-2<x0<2,∴≤x0<2.當(dāng)x0=時(shí),|y0|=,此時(shí)△MF1F2的面積取得最大值,且(S△MF1F2)max=×2×=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an},{bn}均為各項(xiàng)都不相等的數(shù)列,Sn為{an}的前n項(xiàng)和,an+1bn=Sn+1(n∈N).
(1)若a1=1,bn= ,求a4的值;
(2)若{an}是公比為q的等比數(shù)列,求證:存在實(shí)數(shù)λ,使得{bn+λ}為等比數(shù)列;
(3)若{an}的各項(xiàng)都不為零,{bn}是公差為d的等差數(shù)列,求證:a2 , a3 , …,an…成等差數(shù)列的充要條件是d= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知非空集合M滿足M{0,1,2,…,n}(n≥2,n∈N+).若存在非負(fù)整數(shù)k(k≤n),使得當(dāng)a∈M時(shí),均有2k﹣a∈M,則稱集合M具有性質(zhì)P.設(shè)具有性質(zhì)P的集合M的個(gè)數(shù)為f(n).
(1)求f(2)的值;
(2)求f(n)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,以原點(diǎn)O為頂點(diǎn),以y軸為對(duì)稱軸的拋物線E的焦點(diǎn)為F(0,1),點(diǎn)M是直線l:y=m(m<0)上任意一點(diǎn),過點(diǎn)M引拋物線E的兩條切線分別交x軸于點(diǎn)S,T,切點(diǎn)分別為B,A.
(1)求拋物線E的方程;
(2)求證:點(diǎn)S,T在以FM為直徑的圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓 =1(a>b>0)的左、右頂點(diǎn)分別為A,B,焦距為2 ,直線x=﹣a與y=b交于點(diǎn)D,且|BD|=3 ,過點(diǎn)B作直線l交直線x=﹣a于點(diǎn)M,交橢圓于另一點(diǎn)P.
(1)求橢圓的方程;
(2)證明: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,A,B,C的對(duì)邊分別是a,b,c,3sin2C+8sin2A=11sinAsinC,且c<2a.
(1)求證:△ABC為等腰三角形
(2)若△ABC的面積為8 .且sinB= ,求BC邊上的中線長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位為了了解用電量y度與氣溫x℃之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某4天的用電量與當(dāng)天氣溫,并制作了對(duì)照表:
氣溫/℃ | 18 | 13 | 10 | -1 |
用電量/度 | 24 | 34 | 38 | 64 |
由表中數(shù)據(jù)得線性回歸方程中,≈-2,預(yù)測(cè)當(dāng)氣溫為-4℃時(shí),用電量為多少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣a|+|x﹣1|.
(1)當(dāng)a=3時(shí),求不等式f(x)≥2的解集;
(2)若f(x)≥5﹣x對(duì)x∈R恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com