分析 由于已知函數(shù)的最大值是0,故可先求出函數(shù)的導(dǎo)數(shù),研究其單調(diào)性,確定出函數(shù)的最大值,利用最大值小于等于0求出參數(shù)λ的取值范圍,即可求得其最小值.
解答 解:由已知,f(0)=0,f′(x)=$\frac{(1-2λ)x-{λx}^{2}}{{(1+x)}^{2}}$,且f′(0)=0,
若λ<$\frac{1}{2}$,則當(dāng)0<x<2(1-2λ)時,f′(x)>0,所以當(dāng)0<x<2(1-2λ)時,f(x)>0,
若λ≥$\frac{1}{2}$,則當(dāng)x≥0時,f′(x)≤0,所以當(dāng)x≥0時,f(x)≤0,
綜上,λ的最小值為$\frac{1}{2}$.
點評 本題考查導(dǎo)數(shù)知識的運用,考查學(xué)生分析解決問題的能力,比較基礎(chǔ).
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{\sqrt{2}}{2},\frac{\sqrt{3}}{2}$) | B. | ($\frac{\sqrt{2}}{4},\frac{\sqrt{2}}{2}$) | C. | ($\frac{\sqrt{6}}{12},\frac{\sqrt{2}}{4}$) | D. | ($\frac{\sqrt{3}}{13},\frac{\sqrt{6}}{12}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5$\sqrt{3}$ | B. | $\frac{5\sqrt{3}}{2}$ | C. | $\sqrt{3}$ | D. | 5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com