13.設函數(shù)f(x)的定義域為R,周期為2,f(x)=$\left\{\begin{array}{l}{x,0≤x≤1}\\{(\frac{1}{2})^{x}-1,-1≤x<0}\end{array}\right.$,若在區(qū)間[-1,3]上函數(shù)g(x)=f(x)-mx-m恰有四個不同零點,則實數(shù)m的取值范圍是( 。
A.[0,$\frac{1}{2}$]B.[0,$\frac{1}{4}$)C.(0,$\frac{1}{2}$]D.(0,$\frac{1}{4}$]

分析 根據(jù)函數(shù)零點和方程之間的關系轉化為兩個函數(shù)的交點問題,利用數(shù)形結合進行求解即可得到結論.

解答 解:由g(x)=f(x)-mx-m=0得f(x)=mx+m,
設g(x)=mx+m=m(x+1),則g(x)過定點(-1,0),
作出函數(shù)f(x)和g(x)的圖象如圖:
若g(x)=f(x)-mx-m有四個不同零點,
則等價為f(x)與g(x)有四個不同的交點,
由圖象可知當g(x)過點(3,1)時,滿足條件,
可得1=3m+m,則m=$\frac{1}{4}$,
∴在區(qū)間[-1,3]上函數(shù)g(x)=f(x)-mx-m恰有四個不同零點時,實數(shù)m的取值范圍是(0,$\frac{1}{4}$]
故選:D

點評 本題主要考查函數(shù)零點個數(shù)的應用,根據(jù)函數(shù)和方程之間的關系轉化為兩個函數(shù)的交點個數(shù)問題是解決本題的關鍵.注意使用數(shù)形結合的數(shù)學思想.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=(a-$\frac{1}{2}$)(2x-1)+|lnx|.
(1)當a=1時,求f(x)的單調區(qū)間;
(2)若f(x)<2x2在(1,$\frac{5}{4}$)內恒成立,求滿足條件的a的最大整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知直角坐標系xOy中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ2-4ρsinθ+3=0,A、B兩點極坐標分別為(1,π)、(1,0).
(1)求曲線C的參數(shù)方程;
(2)在曲線C上取一點P,求|AP|2+|BP|2的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.平面直角坐標系中,在伸縮變換φ:$\left\{\begin{array}{l}{x′=xcos\frac{π}{6}}\\{y′=ysin\frac{π}{6}}\end{array}\right.$的作用下,正弦曲線y=sinx變換為曲線( 。
A.y′=$\frac{\sqrt{3}}{2}$sin2x′B.y′=2sin2x′C.y′=$\frac{1}{2}$sin$\frac{2\sqrt{3}}{3}$x′D.y′=$\sqrt{3}$sin2x′

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.解不等式|2x-4|-|3x+9|<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.函數(shù)f(x)=3x-4x3(x∈[-1,0])的最小值是( 。
A.-$\frac{1}{2}$B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}$(θ為參數(shù)),在同一平面直角坐標系中,將曲線C上的點按坐標變換$\left\{{\begin{array}{l}{x'=\frac{1}{3}x}\\{y'=\frac{1}{2}y}\end{array}}$得到曲線C',以原點為極點,x軸的正半軸為極軸,建立極坐標系.
(1)寫出曲線 C與曲線C'的極坐標的方程;
(2)若過點A(2$\sqrt{2}$,$\frac{π}{4}}$)(極坐標)且傾斜角為$\frac{π}{3}$的直線l與曲線C交于M,N兩點,試求|AM|•|AN|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知m,n∈N*且1<m<n,試用導數(shù)證明不等式:(1+m)n>(1+n)m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知曲線C的極坐標方程是ρ=4cosθ.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=m+t}\\{y=t}\end{array}\right.$(t是參數(shù)).
(1)若直線l與曲線C相交于A,B兩點,且|AB|=2$\sqrt{3}$,試求實數(shù)m的值;
(2)設M(x,y)為曲線上任意一點,求x+2y-2的取值范圍.

查看答案和解析>>

同步練習冊答案