A. | [0,$\frac{1}{2}$] | B. | [0,$\frac{1}{4}$) | C. | (0,$\frac{1}{2}$] | D. | (0,$\frac{1}{4}$] |
分析 根據(jù)函數(shù)零點(diǎn)和方程之間的關(guān)系轉(zhuǎn)化為兩個(gè)函數(shù)的交點(diǎn)問(wèn)題,利用數(shù)形結(jié)合進(jìn)行求解即可得到結(jié)論.
解答 解:由g(x)=f(x)-mx-m=0得f(x)=mx+m,
設(shè)g(x)=mx+m=m(x+1),則g(x)過(guò)定點(diǎn)(-1,0),
作出函數(shù)f(x)和g(x)的圖象如圖:
若g(x)=f(x)-mx-m有四個(gè)不同零點(diǎn),
則等價(jià)為f(x)與g(x)有四個(gè)不同的交點(diǎn),
由圖象可知當(dāng)g(x)過(guò)點(diǎn)(3,1)時(shí),滿足條件,
可得1=3m+m,則m=$\frac{1}{4}$,
∴在區(qū)間[-1,3]上函數(shù)g(x)=f(x)-mx-m恰有四個(gè)不同零點(diǎn)時(shí),實(shí)數(shù)m的取值范圍是(0,$\frac{1}{4}$]
故選:D
點(diǎn)評(píng) 本題主要考查函數(shù)零點(diǎn)個(gè)數(shù)的應(yīng)用,根據(jù)函數(shù)和方程之間的關(guān)系轉(zhuǎn)化為兩個(gè)函數(shù)的交點(diǎn)個(gè)數(shù)問(wèn)題是解決本題的關(guān)鍵.注意使用數(shù)形結(jié)合的數(shù)學(xué)思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y′=$\frac{\sqrt{3}}{2}$sin2x′ | B. | y′=2sin2x′ | C. | y′=$\frac{1}{2}$sin$\frac{2\sqrt{3}}{3}$x′ | D. | y′=$\sqrt{3}$sin2x′ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | -1 | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com