已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a1=2,a3=8.
(1)若bn=log2an(n∈N*),求數(shù)列{bn}的通項(xiàng)公式;
(2)若cn=
bn
an
(n∈N*),求數(shù)列{cn}的前n項(xiàng)和Sn
考點(diǎn):數(shù)列的求和,等比數(shù)列的通項(xiàng)公式
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件利用等比數(shù)列的通項(xiàng)公式求出公比,從而an=2n(n∈N*),進(jìn)而bn=log2an=log22n=n.
(2)由cn=
n
2n
(n∈N*)
,利用錯(cuò)位相減法能求出Sn=2-
n+2
2n
解答: 解:(1)設(shè)等比數(shù)列{an}的公比為q,
由題意知q>0且q2=
a3
a1
=4
,∴q=2(2分)
an=2n(n∈N*)
∴bn=log2an=log22n=n,
∴數(shù)列{bn}的通項(xiàng)公式為bn=n(n∈N*)(5分)
(2)∵cn=
bn
an
(n∈N*),∴cn=
n
2n
(n∈N*)
,
∴數(shù)列{cn}的前n項(xiàng)和為:Sn=
1
2
+
2
22
+
3
23
+…+
n
2n
①(6分)
在①式兩邊都乘以
1
2
得:
1
2
Sn=
1
22
+
2
23
+
3
24
+…+
n
2n+1
  ②(8分)
①-②得:
1
2
Sn=
1
2
+
1
22
+
1
23
+
1
24
+…+
1
2n
-
n
2n+1
=
1
2
[1-(
1
2
)
n
]
1-
1
2
-
n
2n+1

=1-
1
2n
-
n
2n+1
=1-
n+2
2n+1
(10分)
Sn=2-
n+2
2n
(12分)
點(diǎn)評(píng):本題主要考查數(shù)列的通項(xiàng)公式的求法、前n項(xiàng)和公式的求法,考查等差數(shù)列、等比數(shù)列等基礎(chǔ)知識(shí),考查抽象概括能力,推理論證能力,運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,解題時(shí)要注意錯(cuò)位相減法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若直線l:f(x,y)=0不過點(diǎn)(x0,y0),則方程f(x,y)-f(x0,y0)=0表示( 。
A、與l重合的直線
B、與l平行的直線
C、與l相交的直線
D、可能不表示直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
-x2-2x+15
lg(2-x)
的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,an+1>an,且滿足a2+a4=20,a3=8
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=
1
an
log2an,數(shù)列{bn}的前n項(xiàng)和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與橢圓
x2
16
+
y2
12
=1共焦點(diǎn),離心率互為倒數(shù)的雙曲線方程是( 。
A、x2-
y2
3
=1
B、
x2
3
-y2=1
C、
3x2
4
-
3y2
8
=1
D、
3y2
4
-
3x2
8
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合p={(x,y)||x|+|y|≤4},Q={(x,y)|(x-a)2+(y-b)2≤2,a,b∈R},若Q⊆P,則2a+3b的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sinx的圖象向左平移φ(0≤φ≤2π)個(gè)單位后,得到函數(shù)y=sin(x-
π
6
)的圖象,則φ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x0∈R,x02+x0+1≤0”的否定為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:x-y-m=0經(jīng)過拋物線C:y2=2px(p>0)的焦點(diǎn),l與C交于 A、B兩點(diǎn).若|AB|=6,則p的值為( 。
A、
1
2
B、
3
2
C、1
D、2

查看答案和解析>>

同步練習(xí)冊答案