分析 根據(jù)題意,畫出圖形,結(jié)合圖形,利用平面向量的線性運算與數(shù)量積運算,即可求出結(jié)果.
解答 解:如圖所示,
等腰直角三角形ABC中,∠C=90°,AC=1,且$\overrightarrow{BC}$=-4$\overrightarrow{CD}$,
∴$\overrightarrow{AD}$$•\overrightarrow{AB}$=($\overrightarrow{AC}$+$\overrightarrow{CD}$)•$\overrightarrow{AB}$
=$\overrightarrow{AC}$•$\overrightarrow{AB}$+$\overrightarrow{CD}$•$\overrightarrow{AB}$
=$\overrightarrow{AC}$•$\overrightarrow{AB}$-$\frac{1}{4}$$\overrightarrow{BC}$•$\overrightarrow{AB}$
=|$\overrightarrow{AC}$|×|$\overrightarrow{AB}$|cos45°-$\frac{1}{4}$×|$\overrightarrow{BC}$|×|$\overrightarrow{AB}$|cos135°
=1×$\sqrt{2}$×$\frac{\sqrt{2}}{2}$-$\frac{1}{4}$×1×$\sqrt{2}$×(-$\frac{\sqrt{2}}{2}$)
=$\frac{5}{4}$.
故答案為:$\frac{5}{4}$.
點評 本題考查了平面向量的線性運算與數(shù)量積運算問題,是基礎(chǔ)題目.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$A${\;}_{5}^{5}$ | B. | A${\;}_{5}^{5}$ | C. | $\frac{1}{2}$A${\;}_{4}^{4}$ | D. | 2A${\;}_{4}^{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{15}$ | B. | 2$\sqrt{2}$ | C. | $\sqrt{7}$ | D. | $\sqrt{11}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 銳角三角形 | B. | 鈍角三角形 | ||
C. | 直角三角形 | D. | 直角三角形或鈍角三角形 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com