【題目】(本小題滿分12分)已知函數(shù),其中,且

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)若不等式恒成立,求實數(shù)的取值范圍.

【答案】見解析

【解析】(1)函數(shù)的定義域為,.………………1分

時,,函數(shù)在區(qū)間上是增函數(shù);………………2分

時,由,得;由,得,………………3分

所以函數(shù)在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù).………………4分

綜上:當時,的單調(diào)遞增區(qū)間為,當時,的單調(diào)遞增區(qū)間為,單調(diào)減區(qū)間為………………5分

(2)不等式………………6分

時,取,不合題意;………………7分

時,令,則問題轉(zhuǎn)化為恒成立時,求的取值范圍.………8分

由于.令,得,則

時,,當時,

所以,函數(shù)的最大值為,………………10分

于是由題意知,解得,

實數(shù)的取值范圍是………………12分

【命題意圖】本題主要考查導數(shù)與單調(diào)性的關系、不等式恒成立,意在考查邏輯思維能力、等價轉(zhuǎn)化能力、運算求解能力,考查轉(zhuǎn)化思想與分類討論思想、構造法的應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】2016年入冬以來,各地霧霾天氣頻發(fā), 頻頻爆表(是指直徑小于或等于2.5微米的顆粒物),各地對機動車更是出臺了各類限行措施,為分析研究車流量與的濃度是否相關,某市現(xiàn)采集周一到周五某一時間段車流量與的數(shù)據(jù)如下表:

時間

周一

周二

周三

周四

周五

車流量(萬輛)

50

51

54

57

58

的濃度(微克/立方米)

69

70

74

78

79

(1)請根據(jù)上述數(shù)據(jù),在下面給出的坐標系中畫出散點圖;

(2)試判斷是否具有線性關系,若有請求出關于的線性回歸方程,若沒有,請說明理由;

(3)若周六同一時間段的車流量為60萬輛,試根據(jù)(2)得出的結論,預報該時間段的的濃度(保留整數(shù)).

參考公式: , .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設正項數(shù)列{an}的前n項和為Sn , 且滿足4Sn=an2+2an﹣3(n∈N*),則a2016=(
A.4029
B.4031
C.4033
D.4035

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的長半軸為,短半軸為.橢圓的兩個焦點分別為,,離心率為方程的一根,長半軸為,短半軸為.若.

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖,過橢圓上且位于軸左側(cè)的一點作圓的兩條切線,分別交軸于點、.試推斷是否存在點,使?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),曲線的普通方程為,以坐標原點為極點,的正半軸為極軸建立極坐標系.

I)求直線的極坐標方程與曲線的參數(shù)方程;

II設點D在曲線上,曲線D處的切線與直線垂直,確定D的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,我艇在A處發(fā)現(xiàn)一走私船在方位角45°且距離為12海里的B處正以每小時10海里的速度向方位角105°的方向逃竄,我艇立即以14海里/小時的速度追擊,求我艇追上走私船所需要的最短時間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經(jīng)過點,且離心率為.

(1)求橢圓的方程;

(2)設點軸上的射影為點,過點的直線與橢圓相交于 兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=kx+log9(9x+1)(k∈R)是偶函數(shù).
(1)求k的值;
(2)若函數(shù)g(x)=log9(a3x a)的圖象與f(x)的圖象有且只有一個公共點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列 ,﹣ , ,﹣ ,…的一個通項公式為(
A.an=(﹣1)n
B.an=(﹣1)n
C.an=(﹣1)n+1
D.an=(﹣1)n+1

查看答案和解析>>

同步練習冊答案