【題目】如圖,在平面直角坐標系xOy中,橢圓C: =1(a>1)的左、右頂點分別為A、B,P是橢圓C上任一點,且點P位于第一象限.直線PA交y軸于點Q,直線PB交y軸于點R.當點Q坐標為(0,1)時,點R坐標為(0,2)
(1)求橢圓C的標準方程;
(2)求證: 為定值;
(3)求證:過點R且與直線QB垂直的直線經過定點,并求出該定點的坐標.
【答案】
(1)解:由題意可得A(﹣a,0),B(a,0),
當點Q坐標為(0,1)時,點R坐標為(0,2),
即有kPA= ,直線PA:y= x+1,
kPB=﹣ ,直線PA:y=﹣ x+2,
解得交點P( , ),
代入橢圓方程可得 + =1,
解得a= ,
則橢圓C的標準方程為 =1
(2)證明:設Q(0,s),R(0,t),
由橢圓的方程可得A(﹣ ,0),B( ,0),
即有直線PA:y= x+s,直線PB的方程為y=﹣ x+t,
解得交點P( , ),
代入橢圓方程可得 + =1,
化簡可得st=2,
即有 =st=2為定值;
(3)證明:由(2)可得st=2,即t= ,
直線QB的斜率為k=﹣ ,
即有過點R且與直線QB垂直的直線方程為y= x+t,
即為y= ,令x=﹣ ,可得y=0,
則過點R且與直線QB垂直的直線經過定點,坐標為(﹣ ,0)
【解析】(1)求得A,B的坐標,直線PA,PB的方程,求交點P,代入橢圓方程,解方程,可得a,進而得到橢圓方程;(2)設Q(0,s),R(0,t),求得直線PA,PB的方程,求交點P,代入橢圓方程,化簡整理可得st=2,再由向量的數量積的坐標表示可得定值;(3)求得QB的斜率,運用兩直線垂直的條件:斜率之積為﹣1,求得垂線的方程,由st=2,代入,結合直線恒過定點的求法,可得定點.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=kx3+3(k﹣1)x2﹣k2+1在x=0,x=4處取得極值.
(1)求常數k的值;
(2)求函數f(x)的單調區(qū)間與極值;
(3)設g(x)=f(x)+c,且x∈[﹣1,2],g(x)≥2c+1恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某農科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,12月1日至12月5日的晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數如下表所示:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數y(顆) | 23 | 25 | 30 | 26 | 16 |
該農科所確定的研究方案是:先從這5組數據中選取2組,用剩下的3組數據求回歸方程,再用被選取的2組數據進行檢驗.
(1)求選取的2組數據恰好是不相鄰的2組數據的概率.
(2)若選取的是12月1日與12月5日的兩組數據,請根據12月2日至12月4日的數據,求y關于x的線性回歸方程.
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形.點E是棱PC的中點,平面ABE與棱PD交于點F.
(Ⅰ)求證:AB∥EF;
(Ⅱ)若PA=AD,且平面PAD⊥平面ABCD,求證:AF⊥平面PCD.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,江的兩岸可近似的看成兩平行的直線,江岸的一側有A,B兩個蔬菜基地,江的另一側點C處有一個超市.已知A、B、C中任意兩點間的距離為20千米.超市欲在AB之間建一個運輸中轉站D,A,B兩處的蔬菜運抵D處后,再統(tǒng)一經過貨輪運抵C處.由于A,B兩處蔬菜的差異,這兩處的運輸費用也不同.如果從A處出發(fā)的運輸費為每千米2元,從B處出發(fā)的運輸費為每千米1元,貨輪的運輸費為每千米3元.
(1)設∠ADC=α,試將運輸總費用S(單位:元)表示為α的函數S(α),并寫出自變量的取值范圍;
(2)問中轉站D建在何處時,運輸總費用S最?并求出最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線(a>b>0)的左、右焦點分別是F1,F2,過F2的直線交雙曲線的右支于P,Q兩點,若|PF1|=|F1F2|,且3|PF2|=2|QF2|,則該雙曲線的離心率為 ( )
A. B. C. 2 D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】古希臘人常用小石子在沙灘上擺成各種形狀來研究數,例如:
他們研究過圖1中的1,3,6,10,…,由于這些數能夠表示成三角形,將其稱為三角形數;類似地,稱圖2中的1,4,9,16,…這樣的數為正方形數.下列數中既是三角形數又是正方形數的是
A. 289 B. 1 024 C. 1 225 D. 1 378
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com