【題目】已知圓的圓心在軸上,點(diǎn)是圓的上任一點(diǎn),且當(dāng)點(diǎn)的坐標(biāo)為時(shí),到直線距離最大.
(1)求直線被圓截得的弦長;
(2)已知,經(jīng)過原點(diǎn),且斜率為的直線與圓交于,兩點(diǎn).
(Ⅰ)求證:為定值;
(Ⅱ)若,求直線的方程.
【答案】(1)(2)(Ⅰ)見解析;(Ⅱ)
【解析】
(1)當(dāng)到直線距離最大時(shí),與垂直,可求出圓心的坐標(biāo),從而可以求出圓的方程,然后利用點(diǎn)到直線的距離公式可求出圓心到直線的距離,再由可得到弦長;(2)設(shè)直線的方程為,與圓的方程聯(lián)立,可得到關(guān)于的一元二次方程,及根與系數(shù)關(guān)系。對(duì)于(Ⅰ)由代入根與系數(shù)關(guān)系可得到定值;對(duì)于(Ⅱ)可化為,代入根與系數(shù)關(guān)系即可求出,從而得到答案。
(1)由題意,設(shè)圓心,當(dāng)的坐標(biāo)為時(shí),,
,.
,,所以半徑為.
圓的標(biāo)準(zhǔn)方程為.
圓心到直線的距離為,
所求弦長為.
(2)設(shè)直線的方程為,與圓的方程聯(lián)立,
可得,
,.
(Ⅰ)為定值;
(Ⅱ)
,
.
.
直線的方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= . (I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若不等式f(x)> 恒成立,求整數(shù)k的最大值;
(III)求證:(1+1×2)(1+2×3)…(1+n(n×1))>e2n﹣3(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,已知都是邊長為的等邊三角形,為中點(diǎn),且平面,為線段上一動(dòng)點(diǎn),記.
(1)當(dāng)時(shí),求異面直線與所成角的余弦值;
(2)當(dāng)與平面所成角的正弦值為時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知頂點(diǎn)為原點(diǎn)O的拋物線C1的焦點(diǎn)F與橢圓C2: =1(a>b>0)的右焦點(diǎn)重合,C1與C2在第一和第四象限的交點(diǎn)分別為A、B.
(1)若△AOB是邊長為2 的正三角形,求拋物線C1的方程;
(2)若AF⊥OF,求橢圓C2的離心率e;
(3)點(diǎn)P為橢圓C2上的任一點(diǎn),若直線AP、BP分別與x軸交于點(diǎn)M(m,0)和N(n,0),證明:mn=a2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法不正確的是( )
A. 方程有實(shí)根函數(shù)有零點(diǎn)
B. 有兩個(gè)不同的實(shí)根
C. 函數(shù)在上滿足,則在內(nèi)有零點(diǎn)
D. 單調(diào)函數(shù)若有零點(diǎn),至多有一個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為Aa,b,c,且滿足 =
(1)若4sinC=c2sinB,求△ABC的面積;
(2)若 + =4,求a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“傻子瓜子”是著名瓜子品牌,蕪湖特產(chǎn)之一.屯溪一中組織高二年級(jí)赴蕪湖方特進(jìn) 行研學(xué)活動(dòng),開拓視野,甲、乙兩名同學(xué)在活動(dòng)結(jié)束之余準(zhǔn)備赴商場(chǎng)購買一定量的傻子瓜子.為了讓本次研學(xué)活動(dòng)具有實(shí)際意義,兩名同學(xué)經(jīng)過了解得知系列的瓜子不僅便宜而且口味還不錯(cuò),并且每日的銷售量(單位:千克)與銷售價(jià)格(元/千克)滿足關(guān)系式:,其中,為常數(shù).已知銷售價(jià)格為5元/千克時(shí),每日可售出系列瓜子11千克.若系列瓜子的成本為3元/千克,試確定銷售價(jià)格的值,使該商場(chǎng)每日銷售系列瓜子所獲得的利潤最大.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com