3.集合A={0,2,3},B={x|y=3x-x0},則A∩B=( 。
A.{0}B.{8,26}C.{8}D.{2,3}

分析 求出B中x的范圍確定出B,找出A與B的交集即可.

解答 解:∵A={0,2,3},B={x|y=3x-x0}={x|x≠0},
∴A∩B={2,3},
故選:D.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知集合A={2,3,4},B={-1,0,3},則A∩B={3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與曲線y=$\sqrt{x-1}$相切,則 該雙曲線的離心率為( 。
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{6}}{2}$C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在數(shù)列{an}中,若a2n=2a2n-2+1,a16=127,則a2的值為( 。
A.-1B.0C.2D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.點(diǎn)M在矩形ABCD內(nèi)運(yùn)動(dòng),其中AB=2,BC=1,則動(dòng)點(diǎn)M到頂點(diǎn)A的距離|AM|≤1的概率為( 。
A.$\frac{1}{4}$B.$\frac{π}{8}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知中心在原點(diǎn)O的橢圓左,右焦點(diǎn)分別為F1,F(xiàn)2,F(xiàn)2(1,0),且橢圓過(guò)點(diǎn)(1,$\frac{3}{2}$).
(1)求橢圓的方程;
(2)過(guò)F2的直線l與橢圓交于不同的兩點(diǎn)A,B,則△F1AB的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)F1、F2是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),P是雙曲線右支上一點(diǎn),滿足($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)•$\overrightarrow{P{F}_{2}}$=0(O為坐標(biāo)原點(diǎn)),且3|$\overrightarrow{P{F}_{1}}$|=4|$\overrightarrow{P{F}_{2}}$|,則雙曲線的離心率為( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)f(x)=(2a+1)x+b與g(x)=x2-2(1-a)x+2在(-∞,4]上都是遞減的,實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-3]B.(-∞,-3)C.[-3,-$\frac{1}{2}$)D.(-3,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{{e}^{x}-a}{x-1}$,函數(shù)f(x)的圖象在點(diǎn)(2,f(2))處的切線與直線y=-$\frac{1}{e}$x+e垂直,其中實(shí)數(shù)a是常數(shù),e是自然對(duì)數(shù)的底數(shù).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若關(guān)于x的不等式f(ex+1)≤t有解,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案