分析 (Ⅰ)求導(dǎo)數(shù),利用函數(shù)f(x)的圖象在點(diǎn)(2,f(2))處的切線與直線y=-$\frac{1}{e}$x+e垂直,求實(shí)數(shù)a的值;
(Ⅱ)由于ex+1>1,關(guān)于x的不等式f(ex+1)≤t有解,等價(jià)于?>1,使得f(x)≤t,即$\frac{{e}^{x}-e}{x-1}$≤t,即ex-tx+t-e≤0成立.分類討論,利用導(dǎo)數(shù)確定函數(shù)的單調(diào)性,即可求實(shí)數(shù)t的取值范圍.
解答 解:(Ⅰ)∵f(x)=$\frac{{e}^{x}-a}{x-1}$,
∴f′(x)=$\frac{{e}^{x}(x-2)+a}{(x-1)^{2}}$,
∵函數(shù)f(x)的圖象在點(diǎn)(2,f(2))處的切線與直線y=-$\frac{1}{e}$x+e垂直,
∴f′(2)=e,
∵f′(2)=a,
∴a=e;
(Ⅱ)由(Ⅰ)可知f(x)=$\frac{{e}^{x}-e}{x-1}$,
∵ex+1>1,
∴關(guān)于x的不等式f(ex+1)≤t有解,等價(jià)于?>1,使得f(x)≤t,即$\frac{{e}^{x}-e}{x-1}$≤t,
即ex-tx+t-e≤0成立.
令g(x)=ex-tx+t-e,則g′(x)=ex-t.
①t≤e,則x>1時(shí),g′(x)=ex-t≥e-t≥0,∴g(x)在[1,+∞)上是增函數(shù),
∴x>1時(shí),g(x)>g(1)=0,∴ex-tx+t-e≤0不成立;
②t>e,則由g′(x)=ex-t=0得x=lnt>1,
∵x∈(1,lnt)時(shí),g′(x)<0,∴g(x)在[1,lnt)上是減函數(shù),
∴x∈(1,lnt)時(shí),g(x)<g(1)=0,ex-tx+t-e≤0成立.
綜上所述,實(shí)數(shù)t的取值范圍是(e,+∞).
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的綜合運(yùn)用,考查導(dǎo)數(shù)的幾何意義,考查不等式有解問(wèn)題,考查分類討論的數(shù)學(xué)思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {0} | B. | {8,26} | C. | {8} | D. | {2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 36 | B. | 48 | C. | 72 | D. | 112 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30 | B. | 62 | C. | 126 | D. | 254 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,-1) | B. | $({-\frac{1}{16},0})$ | C. | $({\frac{1}{16},0})$ | D. | (0,1) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com