18.已知sinx=$-\frac{4}{5}$,則sin(x+π)等于( 。
A.$\frac{3}{5}$B.$-\frac{3}{5}$C.$-\frac{4}{5}$D.$\frac{4}{5}$

分析 由條件利用誘導(dǎo)公式進行化簡所給的式子,可得結(jié)果.

解答 解:∵$sinx=-\frac{4}{5}$,∴$sin(x+π)=-sinx=\frac{4}{5}$,
故選:C.

點評 本題主要考查利用誘導(dǎo)公式進行化簡求值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若$sinα-cosβ=\frac{1}{2}$,$cosα-sinβ=\frac{1}{3}$,則sin(α+β)=(  )
A.$\frac{13}{36}$B.$\frac{59}{36}$C.$\frac{59}{72}$D.$\frac{5}{18}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)y=2sin(2x+$\frac{π}{3}$)的圖象( 。
A.關(guān)于原點對稱B.關(guān)于y軸對稱
C.關(guān)于直線x=$\frac{π}{6}$對稱D.關(guān)于點(-$\frac{π}{6}$,0)對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.命題“?x0∈R,7x${\;}_{0}^{3}$+sin 2x0>3”的否定是( 。
A.?x0∈R,7x${\;}_{0}^{3}$+sin2x0≤3B.?x0∈R,7x${\;}_{0}^{3}$+sin2x0<3
C.?x∈R,7x3+sin2x≤3D.?x∈R,7x3+sin2x<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列命題中的假命題是( 。
A.?x∈R,ex>0B.?x∈N,x2>0
C.?x0∈R,lnx0<0D.$?{x_0}∈{N^*},sin\frac{π}{2}{x_0}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知向量$\overrightarrow a$,$\overrightarrow b$滿足$\overrightarrow a=(1,\sqrt{3})$,|$\overrightarrow b|=1$,且$\overrightarrow a+λ\overrightarrow b=\overrightarrow 0$(λ>0),則λ=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知全集U=R,A={y|y=2x+1},B={x|lnx<0},則A∩B=( 。
A.B.$\{x|\frac{1}{2}<x≤1\}$C.{x|x<1}D.{x|0<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)$α∈(0,\frac{π}{2})$$β∈(0,\frac{π}{2})$,且$\frac{cosα}{sinα}=\frac{1-cosβ}{sinβ}$,則( 。
A.$α+β=\frac{π}{2}$B.$α+\frac{β}{2}=\frac{π}{2}$C.$α-\frac{β}{2}=\frac{π}{2}$D.$\frac{β}{2}-α=\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知雙曲線與 橢圓x2+4y2=64共焦點,它的一條漸近線方程為$x-\sqrt{3}y=0$,則雙曲線的方程為$\frac{{x}^{2}}{36}-\frac{{y}^{2}}{12}=1$.

查看答案和解析>>

同步練習(xí)冊答案