10.已知全集U=R,A={y|y=2x+1},B={x|lnx<0},則A∩B=( 。
A.B.$\{x|\frac{1}{2}<x≤1\}$C.{x|x<1}D.{x|0<x<1}

分析 求解函數(shù)的值域化簡A,求解對數(shù)不等式化簡B,然后取交集得答案.

解答 解:∵A={y|y=2x+1}=R,
B={x|lnx<0}=(0,1),
∴A∩B=(0,1).
故選:D.

點(diǎn)評 本題考查交集及其運(yùn)算,考查了函數(shù)值域的求法,訓(xùn)練了對數(shù)不等式的解法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.拋物線x2=y上的點(diǎn)到直線y=2x+m的最短距離為$\sqrt{5}$,則m等于( 。
A.4B.-6C.4或-6D.-4或6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)0<α<$\frac{π}{2}$<β<π,sinα=$\frac{3}{5},sin(α+β)=\frac{3}{5}$,則sinβ的值為$\frac{24}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知sinx=$-\frac{4}{5}$,則sin(x+π)等于( 。
A.$\frac{3}{5}$B.$-\frac{3}{5}$C.$-\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若實(shí)數(shù)x,y滿足x2+y2+4x-2y+4=0,則$\frac{y}{x}$的取值范圍是( 。
A.$({-∞,-\frac{4}{3}}]∪[{0,+∞})$B.$({-∞,-\frac{3}{4}}]∪[{0,+∞})$C.$[{-\frac{3}{4},0}]$D.$[{-\frac{4}{3},0}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系中xOy中,點(diǎn)A,點(diǎn)B分別為x軸,y軸上的兩個(gè)動(dòng)點(diǎn),點(diǎn)F(1,0)為定點(diǎn),B為線段MA的中點(diǎn),且$\overrightarrow{BA}$⊥$\overrightarrow{BF}$.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)設(shè)點(diǎn)P(-1,m),過點(diǎn)F的直線1交軌跡C于G、K兩點(diǎn),記PG,PF,PK的斜率分別為k1,k2,k3,求證:k1,k2,k3成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)y=sin(2x+$\frac{π}{3}$ )的一條對稱軸為( 。
A.x=$\frac{π}{2}$B.x=0C.x=-$\frac{π}{6}$D.x=$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,滿足對任意的正整數(shù)n,均有Sn+3=8Sn+3,則a1=$\frac{3}{7}$,公比q=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(diǎn)(1,$\frac{\sqrt{3}}{2}$),橢圓的左、右頂點(diǎn)分別為A1,A2,點(diǎn)P坐標(biāo)為(4,0),|PA1|,|A1A2|,|PA2|成等差數(shù)列.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)橢圓內(nèi)部是否存在一個(gè)定點(diǎn),過此點(diǎn)的直線交橢圓于M,N兩點(diǎn),且$\overrightarrow{PM}$•$\overrightarrow{PN}$=12恒成立,若存在,求出此點(diǎn),若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案