某學(xué)生在上學(xué)路上要經(jīng)過4個路口,假設(shè)在各路口是否遇到紅燈是相互獨(dú)立的,遇到紅燈的概率都是
1
3
,遇到紅燈時停留的時間都是2 分鐘.設(shè)這名學(xué)生在路上遇到紅燈的個數(shù)為變量ξ、停留的總時間為變量X,
(1)求這名學(xué)生在上學(xué)路上到第三個路口時首次遇到紅燈的概率;
(2)這名學(xué)生在上學(xué)路上遇到紅燈的個數(shù)至多是2個的概率.
(3)求X的標(biāo)準(zhǔn)差
D(X)
考點(diǎn):離散型隨機(jī)變量的期望與方差,極差、方差與標(biāo)準(zhǔn)差
專題:概率與統(tǒng)計(jì)
分析:(1)設(shè)“這名學(xué)生在上學(xué)路上到第三個路口時首次遇到紅燈”為事件A,說明路過前兩個路口遇到的都不是紅燈,利用相互獨(dú)立事件的概率計(jì)算公式即可得出;
(2)由題意可知:這名學(xué)生在路上遇到紅燈的個數(shù)變量ξ~B(4,
1
3
)
,即可得出;
(3)利用二項(xiàng)分布的方差的計(jì)算公式和性質(zhì)即可得出.
解答: 解:(1)設(shè)“這名學(xué)生在上學(xué)路上到第三個路口時首次遇到紅燈”為事件A,說明路過前兩個路口遇到的都不是紅燈,因此則P(A)=(1-
1
3
)2×
1
3
=
4
27
;
(2)由題意可知:這名學(xué)生在路上遇到紅燈的個數(shù)變量ξ~B(4,
1
3
)
,∴P(ξ≤2)=P(ξ=0)+P(ξ=1)+P(ξ=2)=(1-
1
3
)4+
C
1
4
×
1
3
×(1-
1
3
)3+
C
2
4
(
1
3
)2(1-
1
3
)2
=
8
9

(3)由(2)可知:D(ξ)=
1
3
×(1-
1
3
)
=
8
9

∴D(X)=D(2ξ)=22D(ξ)=
32
9

D(X)
=
32
9
=
4
2
3
點(diǎn)評:熟練掌握相互獨(dú)立事件的概率計(jì)算公式、二項(xiàng)分布的概率計(jì)算公式、分布列及其方差與性質(zhì)設(shè)解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一種產(chǎn)品的產(chǎn)量原來是a,在今后m年內(nèi),計(jì)劃使產(chǎn)量平均每年比上一年增加p%,寫出產(chǎn)量隨年數(shù)變化的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)a、b均不大于4,則a2-4b為非負(fù)數(shù)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知z=2x+y,x,y滿足
y≥x
x+y≤2
x≥m
,且z的最大值是最小值的4倍,則m的值是(  )
A、
1
4
B、
1
5
C、
1
6
D、
1
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)在極坐標(biāo)系中,已知圓ρ=2cosθ與直線3ρcosθ+4ρsinθ+a=0相切,求實(shí)數(shù)a的值.
(2)對5副不同的手套進(jìn)行不放回抽取,甲先任取一只,乙再任取一只,然后甲又任取一只,最后乙再任取一只.對于下列事件:①A:甲正好取得兩只配對手套;②B:乙正好取得兩只配對手套.試判斷事件A與B是否獨(dú)立?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)市場調(diào)查:生產(chǎn)某產(chǎn)品需投入年固定成本為3萬元,每生產(chǎn)x萬件,需另投入流動成本為W(x)萬元,在年產(chǎn)量不足8萬件時,W(x)=
1
3
x2+x
(萬元),在年產(chǎn)量不小于8萬件時,W(x)=6x+
100
x
-38
(萬元).通過市場分析,每件產(chǎn)品售價為5元時,生產(chǎn)的商品能當(dāng)年全部售完.
(1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(萬件)的函數(shù)解析式;
(注:年利潤=年銷售收入-固定成本-流動成本)
(2)年產(chǎn)量為多少萬件時,在這一商品的生產(chǎn)中所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在單位圓x2+y2=1上任取一點(diǎn)M,作MN⊥x軸,垂足為N,
NQ
=
2
NM

(Ⅰ)求動點(diǎn)Q的軌跡C的方程;
(Ⅱ)設(shè)點(diǎn)A(a,0),點(diǎn)P為曲線C上任一點(diǎn),求點(diǎn)A到點(diǎn)P距離的最大值d(a);
(Ⅲ)在0<a<1的條件下,設(shè)△POA的面積為S1(O是坐標(biāo)原點(diǎn),P是曲線C上橫坐標(biāo)為a的點(diǎn)),以d(a)為邊長的正方形的面積為S2.若正數(shù)m滿足S1
1
4
mS2
,問m是否存在最小值,若存在,請求出此最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A、B、C所對的邊分別為a、b、c,若A<B<90°<C,且2b=a+c,則
c
a
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1
2
|x|-
1-x2
-1
的零點(diǎn)個數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案