20.已知直線l,m的方向向量分別是$\overrightarrow{a}$=(1,1,0),$\overrightarrow$=(-1,t,2),若l⊥m,則實數(shù)t的值是1.

分析 由直線l與直線m垂直,得直線l,m的方向向量數(shù)量積為0,由此能求出結(jié)果.

解答 解:∵直線l,m的方向向量分別是$\overrightarrow{a}$=(1,1,0),$\overrightarrow$=(-1,t,2),l⊥m,
∴$\overrightarrow{a}•\overrightarrow$=-1+t=0,
解得t=1.
故答案為:1.

點評 本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意直線與直線垂直的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若兩函數(shù)y=x+a與y=$\sqrt{1-2{x}^{2}}$的圖象有兩個交點A、B、O是坐標(biāo)原點,當(dāng)△OAB是直角三角形時,則滿足條件的所有實數(shù)a的值的乘積為$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.等差數(shù)列{an}中,a3=2,a6=5,則數(shù)列{${2}^{{a}_{n}}$}的前5項和等于( 。
A.15B.31C.63D.127

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.從2,3,4,5,6這5個數(shù)字中任取3個,則所得3個數(shù)之和為偶數(shù)的概率為$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,四棱錐P-ABCD中,ABCD是正方形,側(cè)棱PA⊥底面ABCD,PA=AB,M、N分別是PC、PD的中點,則異面直線BM與CN所成的角大小為(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.arccos$\frac{\sqrt{2}}{3}$D.π-arccos$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在股票買賣過程中,經(jīng)常用兩種曲線來描述價格變化情況:一種是即時價格曲線y=f(x),另一種是平均價格曲線y=g(x),如f(3)=4表示開始交易后第3小時的即時價格為4元;g(3)=2表示開始交易后三個小時內(nèi)所有成交股票的平均價格為2元.下面給出四個圖象,實線表示y=f(x),虛線表示y=g(x),其中可能正確的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,角A,B,C的對邊分別為a,b,c,已知acosB-(2c-b)cosA=0.
(Ⅰ)求角A的大小;
(Ⅱ)若a=4,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知命題p:cosα≠0是α≠2kπ(k∈Z)的充分必要條件,
命題q:設(shè)隨機變量ζ~N(0,1),若P(ξ≥$\frac{3}{2}$)=m,則P(-$\frac{3}{2}$<ξ<0)=$\frac{1}{2}$-m,
下列命題是假命題的為( 。
A.p∧qB.p∨qC.¬p∧qD.¬p∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知等差數(shù)列{an}的前n項和Sn滿足S3=6,S5=15.
(Ⅰ)求{an}的通項公式;
(Ⅱ)設(shè)bn=$\frac{a_n}{{{2^{a_n}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案