分析 (1)根據(jù)數(shù)列遞推式,利用賦值法,可得a2,根據(jù)數(shù)列遞推式,令m=n+2,進(jìn)而可得an+2=2an+1-an+2;
(2)確定數(shù)列{an}的通項(xiàng),運(yùn)用裂項(xiàng)相消求出數(shù)列的和,再進(jìn)行放縮,即可證得結(jié)論.
解答 (1)證明:令m=n,可得a0=0;令n=0,可得a2m=4am-2m,
令m=1,可得a2=4a1-2=6;
令m=n+2,則a2n+2+a2-2=$\frac{1}{2}$(a2n+4+a2n),
∵a2m=4am-2m,
∴a2n+1=4an+1-2(n+1),a2n+4=4an+2-2(n+2),a2n=4an-2n
∴an+2=2an+1-an+2;
(2)證明:由(1)知(an+2-an+1)-(an+1-an)=2
∵bn=an+1-an,
∴bn+1-bn=2
∴數(shù)列{bn}為首項(xiàng)為a2-a1=4,公差為2的等差數(shù)列,
bn=2n+2,
則an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)
=2+4+6+…+2n=n(n+1),
$\frac{1}{{a}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
即有$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2015}}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{2015}$-$\frac{1}{2016}$
=1-$\frac{1}{2016}$<1.
點(diǎn)評 點(diǎn)評:本題考查數(shù)列遞推式,考查等差數(shù)列的證明,考查數(shù)列的通項(xiàng)與求和,考查不等式的證明,正確確定數(shù)列的通項(xiàng),利用裂項(xiàng)相消求和及放縮法是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2017屆江西南昌新課標(biāo)高三一輪復(fù)習(xí)訓(xùn)練三數(shù)學(xué)試卷(解析版) 題型:填空題
已知對任意的,函數(shù)值總大于0,則的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆安徽淮北十二中高三上月考二數(shù)學(xué)(理)試卷(解析版) 題型:解答題
設(shè)為奇函數(shù),為常數(shù).
(1)求的值;
(2)判斷函數(shù)在上的單調(diào)性,并說明理由;
(3)若對于區(qū)間上的每一個值,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 0 | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com