15.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,若S3=7,S6=63,則數(shù)列{nan}的前n項(xiàng)和為( 。
A.-3+(n+1)×2nB.3+(n+1)×2nC.1+(n+1)×2nD.1+(n-1)×2n

分析 根據(jù)等比數(shù)列的求和公式,求出首項(xiàng)和公比,再根據(jù)錯位相減數(shù)列{nan}的前n項(xiàng)和.

解答 解:由題意可得,公比q≠1,∴$\frac{{a}_{1}(1-{q}^{3})}{1-q}$=7,$\frac{{a}_{1}(1-{q}^{6})}{1-q}$=63,
相除可得 1+q3=9,∴q=2,∴a1=1.
故 an=a1qn-1=2n-1,
∴nan=n2n-1,
數(shù)列{nan}的前n項(xiàng)和Mn=1•20+2•21+…+n•2n-1
2Mn=1•21+2•22+…+(n-1)•2n-1+n•2n,
兩式相減可得,-Mn=1+21+22+…+2n-1-n•2n=$\frac{1-{2}^{n}}{1-2}$-n•2n=2n-1-n•2n=(1-n)•2n-1,
∴Mn=(n-1)•2n+1
故選:D

點(diǎn)評 本題考查了等比數(shù)列的前n項(xiàng)和公式,以及錯位相減求數(shù)列的和的應(yīng)用,考查了計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系,將曲線C1上的每一個點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來的$\frac{1}{2}$,得到曲線C2,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρ=2.
(Ⅰ)求曲線C2的參數(shù)方程;
(Ⅱ)過原點(diǎn)O且關(guān)于y軸對稱點(diǎn)兩條直線l1與l2分別交曲線C2于A、C和B、D,且點(diǎn)A在第一象限,當(dāng)四邊形ABCD的周長最大時,求直線l1的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ex(lnx+x-1).
(1)求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)試比較f(x)與1的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)$f(x)=\frac{sinx}{sinx+cosx}$,則$f'(\frac{π}{2})$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.為了解甲、乙兩廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽取14件和5件,測量產(chǎn)品中的微量元素x,y的含量(單位:毫克),如表是乙廠的5件產(chǎn)品的測量數(shù)據(jù):
編號12345
x169178166175180
y7580777081
(1)已知甲廠生產(chǎn)的產(chǎn)品共有98件,求乙廠生產(chǎn)的產(chǎn)品數(shù)量;
(2)當(dāng)產(chǎn)品中的微量元素x,y滿足x≥175,且y≥75時,該產(chǎn)品為優(yōu)等品.用上述樣本數(shù)據(jù)估計乙廠生產(chǎn)的優(yōu)等品的數(shù)量;
(3)從乙廠抽出的上述5件產(chǎn)品中,隨機(jī)抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)ξ的分布列及方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.有5位學(xué)生和4位老師站在一排拍照,任何兩位老師不站在一起的不同排法共有(  )
A.(5!)2B.4!•5!種C.$A_6^4$•5!種D.A${\;}_{5}^{3}$•5!種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)用輾轉(zhuǎn)相除法求117與182的最大公約數(shù),并用更相減損術(shù)檢驗(yàn).
(2)用秦九韶算法求多項(xiàng)式f(x)=1-9x+8x2-4x4+5x5+3x6在x=-1的值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知焦距為2$\sqrt{3}$的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)為F1、上頂點(diǎn)為D,直線DF1與橢圓C的另一個交點(diǎn)為H,且|DF1|=7|F1H|.求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知i為虛數(shù)單位,復(fù)數(shù)$z=\frac{1+2i}{i-1}$,則復(fù)數(shù)z的虛部是(  )
A.$-\frac{3}{2}i$B.$-\frac{3}{2}$C.$\frac{3}{2}i$D.$\frac{3}{2}$

查看答案和解析>>

同步練習(xí)冊答案