【題目】近年來,隨著我市經濟的快速發(fā)展,政府對民生越來越關注市區(qū)現有一塊近似正三角形的土地(如圖所示),其邊長為2百米,為了滿足市民的休閑需求,市政府擬在三個頂點處分別修建扇形廣場,即扇形和,其中與、分別相切于點,且與無重疊,剩余部分(陰影部分)種植草坪.設長為(單位:百米),草坪面積為(單位:萬平方米).
(1)試用分別表示扇形和的面積,并寫出的取值范圍;
(2)當為何值時,草坪面積最大?并求出最大面積.
科目:高中數學 來源: 題型:
【題目】科研人員在對某物質的繁殖情況進行調查時發(fā)現,1月、2月、3月該物質的數量分別為3、5、9個單位.為了預測以后各月該物質的數量,甲選擇了模型,乙選擇了模型,其中y為該物質的數量,x為月份數,a,b,c,p,q,r為常數.
(1)若5月份檢測到該物質有32個單位,你認為哪個模型較好,請說明理由.
(2)對于乙選擇的模型,試分別計算4月、7月和10月該物質的當月增長量,從計算結果中你對增長速度的體會是什么?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2002年國際數學家大會在北京召開,會標是以我國古代數學家趙爽的弦圖為基礎設計.弦圖是由四個全等的直角三角形與一個小正方形拼成的一個大正方形(如圖)如果小正方形的邊長為1,大正方形的邊長為5,直角三角形中較小的銳角為,則 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線的參數方程為(為參數),在極坐標系中,圓C的極坐標方程為:
(1)求圓C的直角坐標方程;
(2)設圓C與直線交于兩點,若點的坐標為,求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地區(qū)為了解群眾上下班共享單車使用情況,根據年齡按分層抽樣的方式調查了該地區(qū)50名群眾,他們的年齡頻數及使用共享單車人數分布如下表:
年齡段 | 20~29 | 30~39 | 40~49 | 50~60 |
頻數 | 12 | 18 | 15 | 5 |
經常使用共享單車 | 6 | 12 | 5 | 1 |
(1)由以上統(tǒng)計數據完成下面的列聯表,并判斷是否有95%的把握認為以40歲為分界點對是否經常使用共享單車有差異?
年齡低于40歲 | 年齡不低于40歲 | 總計 | |
經常使用共享單車 | |||
不經常使用共享單車 | |||
總計 |
附:,.
0.25 | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
(2)若采用分層抽樣的方式從年齡低于40歲且經常使用共享單車的群眾中選出6人,再從這6人中隨機抽取2人,求這2人中恰好有1人年齡在30~39歲的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com