20.曲線C1:$\frac{x^2}{m}+\frac{y^2}{n}=1$(m>n>0),曲線C2:$\frac{x^2}{a}-\frac{y^2}=1$(a>b>0).若C1與C2有相同的焦點F1、F2,且P同在C1、C2上,則|PF1|•|PF2|=( 。
A.m+aB.m-aC.m2+a2D.m2-a2

分析 由題設(shè)條件可知|PF1|+|PF2|=2$\sqrt{m}$,|PF1|-|PF2|=2$\sqrt{a}$,由此可以求出|PF1|•|PF2|的值

解答 解:由題設(shè)條件可知|PF1|+|PF2|=2$\sqrt{m}$,|PF1|-|PF2|=2$\sqrt{a}$,
∴|PF1|=$\sqrt{m}+\sqrt{a}$,|PF2|=$\sqrt{m}-\sqrt{a}$,
∴|PF1|•|PF2|=m-a.
故選:B

點評 本題綜合考查了雙曲線和橢圓的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)雙曲線C經(jīng)過點$(1,\frac{{3\sqrt{5}}}{2})$,且漸近線的方程為$y=±\frac{3}{2}x$,
求(1)雙曲線C的方程;
(2)雙曲線C的離心率及頂點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在四棱柱ABCD-A1B1C1D1中,底面ABCD為矩形,AB=3,AD=1,AA1=2,且∠BAA1=∠DAA1=60°.則異面直線AC與BD1所成角的余弦值為$\frac{7\sqrt{10}}{40}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=2x+2-x
(Ⅰ)試寫出這個函數(shù)的性質(zhì)(不少于3條,不必說明理由),并作出圖象;
(Ⅱ)設(shè)函數(shù)g(x)=4x+4-x-af(x),求這個函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)$f(x)=2x+\frac{1}{x}$.
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷f(x)在[2,+∞)上的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知以點A(m,$\frac{2}{m}$)(m∈R且m>0)為圓心的圓與x軸相交于O,B兩點,與y軸相交于O,C兩點,其中O為坐標(biāo)原點.
(1)當(dāng)m=2時,求圓A的標(biāo)準(zhǔn)方程;
(2)當(dāng)m變化時,△OBC的面積是否為定值?若是,請求出該定值;若不是,請說明理由;
(3)設(shè)直線l:2x+y-4=0與圓A相交于P,Q兩點,且|OP|=|OQ|,求|PQ|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.我們把離心率e=$\frac{\sqrt{5}+1}{2}$的雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)稱為黃金雙曲線.如圖是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0,c=$\sqrt{{a}^{2}+^{2}}$)的圖象,給出以下幾個說法:
①若b2=ac,則該雙曲線是黃金雙曲線;
②若F1,F(xiàn)2為左右焦點,A1,A2為左右頂點,B1(0,b),B2(0,-b)且∠F1B1A2=90°,則該雙曲線是黃金雙曲線;
③若MN經(jīng)過右焦點F2且MN⊥F1F2,∠MON=90°,則該雙曲線是黃金雙曲線.
其中正確命題的序號為①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知圓${C_1}:{x^2}+{y^2}=1$,圓${C_2}:{(x-3)^2}+{(y-4)^2}=9$,則圓C1與圓C2的位置關(guān)系是( 。
A.內(nèi)含B.外離C.相交D.相切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知全集U={1,2,3,4,5},集合A={4,5},則∁UA=(  )
A.{5}B.{4,5}C.{1,2,3}D.{1,2,3,4,5}

查看答案和解析>>

同步練習(xí)冊答案