18.已知曲線y=x3+ax+b在x=1處的切線方程是y=2x+1,則實(shí)數(shù)b為( 。
A.1B.-3C.3D.-1

分析 求出原函數(shù)的導(dǎo)函數(shù),由曲線在x=1處的切線的斜率求得a,再由曲線和直線在x=1處的函數(shù)值相等求得b.

解答 解:由y=x3+ax+b,得y′=3x2+a,
由題意可知y′|x=1=3+a=2,即a=-1.
又當(dāng)x=1時(shí),y=3,
∴13-1×1+b=3,即b=3.
故選:C.

點(diǎn)評 本題考查利用導(dǎo)數(shù)研究過曲線上某點(diǎn)處的切線方程,過曲線上某點(diǎn)處的切線的斜率,就是函數(shù)在該點(diǎn)處的導(dǎo)數(shù)值,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)f(x)=2$\sqrt{3}$cos(2x+$\frac{π}{6}$)+3.
(1)求f(x)的最大值及單調(diào)遞減區(qū)間;
(2)若銳角α滿足f(α)=3-2$\sqrt{3}$,求tan$\frac{4}{5}$α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.根據(jù)數(shù)列極限的定義證明:
(1)$\underset{lim}{n→∞}(-1)^{n}\frac{1}{{n}^{2}}$;   
(2)$\underset{lim}{n→∞}\frac{3n+1}{2n+1}$;
(3)$\underset{lim}{n→∞}$$\underset{\underbrace{0.999…9}}{n個(gè)}$=1;
(4)$\underset{lim}{n→∞}\frac{sinn}{n}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求極值$\underset{lim}{x→0}$$\frac{{e}^{x}-{e}^{-x}}{arcsin2x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知α,β是三次函數(shù)f(x)=$\frac{1}{3}{x^3}+\frac{1}{2}a{x^2}$+2bx的兩個(gè)極值點(diǎn),且 α∈(0,1),β∈(1,2),則$\frac{b-1}{a-1}$的范圍(  )
A.$(0,\frac{1}{2})$B.(0,1)C.$(-\frac{1}{2},0)$D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)a>0,b>0,則下列不等式中不恒成立的是( 。
A.$(a+b)(\frac{1}{a}+\frac{1})≥4$B.a3+b3≥2ab2C.$\sqrt{|a-b|}≥\sqrt{a}-\sqrt$D.a2+b2+2≥2a+2b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.對于集合A={x|0≤x≤2},B={y|0≤y≤3},則由下列圖形給出的對應(yīng)f中,能構(gòu)成從A到B的函數(shù)的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.某程序框圖如圖所示,該程序運(yùn)行后輸出的S的值是30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)$f(x)=\frac{1}{{1+{x^2}}}$,
(1)利用函數(shù)單調(diào)性定義證明函數(shù)f(x)在(-∞,0]上是增函數(shù);
(2)求函數(shù)$f(x)=\frac{1}{{1+{x^2}}}$在[-3,2]上的值域.

查看答案和解析>>

同步練習(xí)冊答案