設(shè)數(shù)列,都是正項等比數(shù)列,,分別為數(shù)列與的前項和,且,則=
科目:高中數(shù)學(xué) 來源: 題型:
Sn |
1 |
S1 |
1 |
S2 |
1 |
Sn |
an2 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)Sn為等差數(shù)列{an}的前n項和.(n∈N*).
(Ⅰ)若數(shù)列{an}單調(diào)遞增,且a2是a1、a5的等比中項,證明:
(Ⅱ)設(shè){an}的首項為a1,公差為d,且,問是否存在正常數(shù)c,使對任意自然數(shù)n都成立,若存在,求出c(用d表示);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆重慶市七區(qū)高三第一次調(diào)研測試數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)
設(shè)數(shù)列的各項都為正數(shù),其前項和為,已知對任意,是和的等比中項.
(Ⅰ)證明數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;
(Ⅱ)證明;
(Ⅲ)設(shè)集合,,且,若存在∈,使對滿足的一切正整數(shù),不等式恒成立,求這樣的正整數(shù)共有多少個?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶市七區(qū)高三第一次調(diào)研測試數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)
設(shè)數(shù)列的各項都為正數(shù),其前項和為,已知對任意,是 和的等比中項.
(Ⅰ)證明數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;
(Ⅱ)證明;
(Ⅲ)設(shè)集合,,且,若存在∈,使對滿足 的一切正整數(shù),不等式恒成立,求這樣的正整數(shù)共有多少個?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com