A. | $\frac{2π}{3}$ | B. | $\frac{4π}{3}$ | C. | $\frac{8π}{3}$ | D. | 3π |
分析 將四面體ABCD放置于正方體中,則正方體的外接球就是四面體ABCD的外接球.因此利用題中數(shù)據(jù)算出AB,即可算出截面面積的最小值.
解答 解:由題意,面積最小的截面是以AB為直徑的截面,
將四面體ABCD放置于正方體中,可得正方體的外接球就是四面體ABCD的外接球,
設AB=a,則$\sqrt{3}•\frac{\sqrt{2}}{2}a$=4,可求得AB=$\frac{4\sqrt{6}}{3}$,
進而截面面積的最小值為$π•(\frac{2\sqrt{6}}{3})^{2}$=$\frac{8π}{3}$.
故選:C.
點評 球的內接幾何體問題是高考熱點問題,本題通過求球的截面面積,對考生的空間想象能力及運算求解能力進行考查,具有一定難度.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{39}$ | B. | $\frac{7}{78}$ | C. | $\frac{7}{76}$ | D. | $\frac{5}{81}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
等級 | 喜歡 | 一般 | 不喜歡 |
頻數(shù) | 15 | x | 5 |
等級 | 喜歡 | 一般 | 不喜歡 |
頻數(shù) | 15 | 3 | y |
男性 | 女性 | 總計 | |
喜歡 | |||
非喜歡 | |||
總計 |
P( K2≥k0) | 0.10 | 0.05 | 0.01 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 64π | B. | 16π | C. | 14π | D. | 4π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com