【題目】已知橢圓的右焦點(diǎn)為,點(diǎn)為橢圓上的動(dòng)點(diǎn),若的最大值和最小值分別為.

(I)求橢圓的方程

(Ⅱ)設(shè)不過(guò)原點(diǎn)的直線與橢圓 交于兩點(diǎn),若直線的斜率依次成等比數(shù)列,求面積的最大值

【答案】(1) .

(2)1.

【解析】分析第一問(wèn)根據(jù)橢圓上的點(diǎn)到焦點(diǎn)的距離的最大值和最小值分別是,結(jié)合已知條件,建立關(guān)于的方程組,從而求得的值,借助于橢圓中之間的關(guān)系,求得的值,從而求得橢圓的方程;第二問(wèn)設(shè)出直線的方程,將其與橢圓聯(lián)立,寫(xiě)出兩根和與兩根積,根據(jù)條件,確定出斜率的值,之后將面積轉(zhuǎn)化為關(guān)于b的式子,利用二次函數(shù)的最值求得結(jié)果.

詳解:(I)由已知得:

橢圓方程為

(II)設(shè)(易知存在斜率,且),設(shè)

由條件知:

聯(lián)立(1)(2)得:

點(diǎn)到直線的距離

所以當(dāng)時(shí):

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一只藥用昆蟲(chóng)的產(chǎn)卵數(shù)與一定范圍內(nèi)的溫度有關(guān),現(xiàn)收集了該種藥用昆蟲(chóng)的組觀測(cè)數(shù)據(jù)如下表:

溫度

產(chǎn)卵數(shù)/個(gè)

經(jīng)計(jì)算得: , , , ,線性回歸模型的殘差平方和 ,其中 分別為觀測(cè)數(shù)據(jù)中的溫差和產(chǎn)卵數(shù), .

(1)若用線性回歸方程,求關(guān)于的回歸方程(精確到);

(2)若用非線性回歸模型求得關(guān)于回歸方程為,且相關(guān)指數(shù).

(i)試與(1)中的回歸模型相比,用說(shuō)明哪種模型的擬合效果更好.

(ii)用擬合效果好的模型預(yù)測(cè)溫度為時(shí)該種藥用昆蟲(chóng)的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).

附:一組數(shù)據(jù) ,…, ,其回歸直線的斜率和截距的最小二乘估計(jì)為, ;相關(guān)指數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,

(1)設(shè)相交于點(diǎn),且平面,求實(shí)數(shù)的值;

(2)若, 求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《中華人民共和國(guó)道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動(dòng)車(chē)行經(jīng)人行橫道時(shí),應(yīng)當(dāng)減速慢行;遇行人正在通過(guò)人行橫道,應(yīng)當(dāng)停車(chē)讓行,俗稱(chēng)“禮讓斑馬線”,《中華人民共和國(guó)道路交通安全法》 第90條規(guī)定:對(duì)不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個(gè)月內(nèi)駕駛員不“禮讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):

月份

1

2

3

4

5

違章駕駛員人數(shù)

120

105

100

90

85

(1)請(qǐng)利用所給數(shù)據(jù)求違章人數(shù)y與月份之間的回歸直線方程+

(2)預(yù)測(cè)該路口7月份的不“禮讓斑馬線”違章駕駛員人數(shù);

(3)交警從這5個(gè)月內(nèi)通過(guò)該路口的駕駛員中隨機(jī)抽查了50人,調(diào)查駕駛員不“禮讓斑馬線”行為與駕齡的關(guān)系,得到如下2列聯(lián)表:

不禮讓斑馬線

禮讓斑馬線

合計(jì)

駕齡不超過(guò)1年

22

8

30

駕齡1年以上

8

12

20

合計(jì)

30

20

50

能否據(jù)此判斷有97.5的把握認(rèn)為“禮讓斑馬線”行為與駕齡有關(guān)?

參考公式及數(shù)據(jù):,.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),曲線處的切線方程為.

(1)求的解析式;

(2)當(dāng)時(shí),求證:

(3)若對(duì)任意的恒成立,則實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列推理合理的是( 。

A. 若函數(shù)yfx)是增函數(shù),則f'x)>0

B. 因?yàn)?/span>aba,b∈R),則a+2ib+2ii是虛數(shù)單位)

C. A是三角形ABC的內(nèi)角,若cosA0,則此三角形為銳角三角形

D. αβ是銳角△ABC的兩個(gè)內(nèi)角,則sinαcosβ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電視廠家準(zhǔn)備在五一舉行促銷(xiāo)活動(dòng),現(xiàn)在根據(jù)近七年的廣告費(fèi)與銷(xiāo)售量的數(shù)據(jù)確定此次廣告費(fèi)支出.廣告費(fèi)支出x(萬(wàn)元)和銷(xiāo)售量y(萬(wàn)臺(tái))的數(shù)據(jù)如下:

(1)若用線性回歸模型擬合y與x的關(guān)系,求出y關(guān)于x的線性回歸方程(其中;參考方程:回歸直線

(2)若用模型擬合y與x的關(guān)系,可得回歸方程,經(jīng)計(jì)算線性回歸模型和該模型的分別約為0.75和0.88,請(qǐng)用說(shuō)明選擇哪個(gè)回歸模型更好;

(3)已知利潤(rùn)z與x,y的關(guān)系為z=200y﹣x.根據(jù)(2)的結(jié)果回答:當(dāng)廣告費(fèi)x=20時(shí),銷(xiāo)售量及利潤(rùn)的預(yù)報(bào)值是多少?(精確到0.01)參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,,,中點(diǎn).

(1)證明:平面

(2)若平面,是邊長(zhǎng)為2的正三角形,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體中,M,N,E,F(xiàn)分別是棱A1B1,A1D1,B1C1,C1D1的中點(diǎn),求證:平面AMN∥平面EFDB.

查看答案和解析>>

同步練習(xí)冊(cè)答案