【題目】已知函數(shù)
(1)判斷f(x)的奇偶性;
(2)當(dāng)x∈[﹣1,1]時(shí),f(x)≥m恒成立,求m的取值范圍.

【答案】
(1)解:在函數(shù)f(x)的定義域R上任取一自變量x

因?yàn)? =﹣f(x),

所以函數(shù)f(x)為奇函數(shù)


(2)解:當(dāng)a>1時(shí),在[﹣1,1]上任取x1,x2,令x1<x2,

= ,

∵0≤x1<x2≤1,

∴f(x1)﹣f(x2)<0

所以函數(shù)f(x)在x∈[﹣1,1]時(shí)為增函數(shù),

當(dāng)0<a<1時(shí),同理可證函數(shù)f(x)在x∈[﹣1,1]時(shí)為增函數(shù),

所以m≤1


【解析】(1)根據(jù)函數(shù)奇偶性的定義判斷即可;(2)根據(jù)函數(shù)單調(diào)性的定義判斷其單調(diào)性,從而求出函數(shù)的最小值,求出m的范圍.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的奇偶性的相關(guān)知識(shí),掌握偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=Asin(ωx+φ)(A,ω>0,0<|φ|<π)在一個(gè)周期內(nèi)的圖象如圖所示.

(1)求函數(shù)f(x)的解析式;
(2)求g(x)=f(3x+ )﹣1在[﹣ , ]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn , 已知a1=2,且4S1 , 3S2 , 2S3成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=|2n﹣5|an , 求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知圓 ,點(diǎn),點(diǎn)),以為圓心, 為半徑作圓,交圓于點(diǎn),且的平分線(xiàn)交線(xiàn)段于點(diǎn).

(1)當(dāng)變化時(shí),點(diǎn)始終在某圓錐曲線(xiàn)上運(yùn)動(dòng),求曲線(xiàn)的方程;

(2)已知直線(xiàn) 過(guò)點(diǎn) ,且與曲線(xiàn)交于 兩點(diǎn),記面積為, 面積為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)判斷函數(shù)f(x)的奇偶性,并證明;
(2)利用函數(shù)單調(diào)性的定義證明:f(x)是其定義域上的增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】向量 =(1,2), =(x,1),
(1)當(dāng) +2 與2 平行時(shí),求x;
(2)當(dāng) +2 與2 垂直時(shí),求x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知長(zhǎng)方體ABCD﹣A1B1C1D1中,AB=BC=2,AA1=4,E是棱CC1上的點(diǎn),且BE⊥B1C.
(1)求CE的長(zhǎng);
(2)求證:A1C⊥平面BED;
(3)求A1B與平面BDE夾角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐E﹣ABCD中,底面ABCD為矩形,平面ABCD⊥平面ABE,∠AEB=90°,BE=BC,F(xiàn)為CE的中點(diǎn),求證:

(1)AE∥平面BDF;
(2)平面BDF⊥平面ACE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線(xiàn)的參數(shù)方程為, 為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.

(1)當(dāng)時(shí),求曲線(xiàn)上的點(diǎn)到直線(xiàn)的距離的最大值;

(2)若曲線(xiàn)上的所有點(diǎn)都在直線(xiàn)的下方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案