【題目】已知函數(shù)
(1)判斷函數(shù)f(x)的奇偶性,并證明;
(2)利用函數(shù)單調(diào)性的定義證明:f(x)是其定義域上的增函數(shù).

【答案】
(1)解:f(x)為奇函數(shù).證明如下:

∵2x+1≠0,

∴f(x)的定義域?yàn)镽,

又∵

∴f(x)為奇函數(shù)


(2)解: ,

任取x1、x2∈R,設(shè)x1<x2,

= = ,

,∴ ,又 , ,

∴f(x1)﹣f(x2)<0,∴f(x1)<f(x2).

∴f(x)在其定義域R上是增函數(shù)


【解析】(1)根據(jù)函數(shù)奇偶性的定義可作出判斷、證明;(2) ,任取x1、x2∈R,設(shè)x1<x2 , 通過(guò)作差證明f(x1)<f(x2)即可;
【考點(diǎn)精析】通過(guò)靈活運(yùn)用函數(shù)的單調(diào)性和奇偶性與單調(diào)性的綜合,掌握注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);函數(shù)的單調(diào)性還有單調(diào)不增,和單調(diào)不減兩種;奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相反的單調(diào)性即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù).
(1)求a,b的值;
(2)解不等式f(x)< ;
(3)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)下列算法語(yǔ)句,將輸出的A值依次記為a1 , a2 , …,an , …,a2015;已知函數(shù)f(x)=a2sin(ωx+φ)(ω>0,|φ|< )的最小正周期是a1 , 且函數(shù)y=f(x)的圖象關(guān)于直線x= 對(duì)稱.
(Ⅰ)求函數(shù)y=f(x)表達(dá)式;
(Ⅱ)已知△ABC中三邊a,b,c對(duì)應(yīng)角A,B,C,a=4,b=4 ,∠A=30°,求f(B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是自然對(duì)數(shù)的底數(shù)),

(1)求曲線在點(diǎn)處的切線方程;

(2)求的單調(diào)區(qū)間;

(3)設(shè),其中的導(dǎo)函數(shù),證明:對(duì)任意,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓的離心率為,過(guò)左焦點(diǎn)且斜率為的直線交橢圓, 兩點(diǎn),線段的中點(diǎn)為,直線交橢圓, 兩點(diǎn).

I)求橢圓的方程.

II)求證:點(diǎn)在直線上.

III)是否存在實(shí)數(shù),使得的面積是面積的倍?若存在,求出的值.若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)判斷f(x)的奇偶性;
(2)當(dāng)x∈[﹣1,1]時(shí),f(x)≥m恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

I,求函數(shù)的單調(diào)區(qū)間.

II若函數(shù)在區(qū)間上是減函數(shù),求實(shí)數(shù)的取值范圍.

III過(guò)坐標(biāo)原點(diǎn)作曲線的切線,求切線的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)的定義域?yàn)镈,如果x∈D,y∈D,使得f(x)=﹣f(y)成立,則稱函數(shù)f(x)為“Ω函數(shù)”.給出下列四個(gè)函數(shù):
①y=sinx;
②y=2x;
③y= ;
④f(x)=lnx,
則其中“Ω函數(shù)”共有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答題
(1)從0,1,2,3,4,5這六個(gè)數(shù)字任取3個(gè),問(wèn)能組成多少個(gè)沒(méi)有重復(fù)數(shù)字的三位數(shù)?
(2)若(x6+3)(x2+ 5的展開(kāi)式中含x10項(xiàng)的系數(shù)為43,求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案