14.給定下列四個命題:
①若$\frac{1}{a}$<$\frac{1}$<0,則b2>a2;
②已知直線l,平面α,β為不重合的兩個平面,若l⊥α,且α⊥β,則l∥β;
③若-1,a,b,c,-16成等比數(shù)列,則b=-4;
④三棱錐的四個面可以都是直角三角形.
其中真命題編號是①③④(寫出所有真命題的編號).

分析 根據(jù)不等式的性質(zhì)、空間線面位置關(guān)系、等比數(shù)列定義、三棱錐定義等逐一對各個答案的真假進(jìn)行判斷.

解答 解:對于①,由$\frac{1}{a}$<$\frac{1}$<0得到b<a<0,∴b2>a2,故①是真命題;
對于②,若l⊥α,且α⊥β,則l∥β或l?β,故是②假命題;
對于③若-1,a,b,c,-16成等比數(shù)列,則a2=-1×b,且b2=-1×(-16),∴b<0,b=-4,故③是真命題;
對于④,如圖所示三棱錐C-A1B1C1的四個面可以都是直角三角形.故④是真命題.
故答案是:①③④

點(diǎn)評 此種題型往往比較綜合考查多個知識點(diǎn)的概念,處理的關(guān)鍵是熟練掌握各個知識點(diǎn)的概念、定義逐一對各個答案的真假進(jìn)行判斷.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的前n項和為Sn=n2+4n+1,
(Ⅰ)求數(shù)列{an}的通項公式; 
(Ⅱ)設(shè)bn=2n-1•(an-1),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0).若雙曲線上存在點(diǎn)P,使PF1=2PF2,則該雙曲線的離心率的取值范圍是(1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如果函數(shù)f(x)=ax(ax-3a2-1)(a>0且a≠1)在區(qū)間(-∞,0]上是減函數(shù),那么實(shí)數(shù)a的取值范圍是( 。
A.$(0,\frac{{\sqrt{3}}}{3}]$B.$(0,\frac{{\sqrt{3}}}{3}]∪$(1,+∞)C.$[\frac{{\sqrt{3}}}{3},1)$D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,已知sinA=$\frac{2}{3}$,cosB=$\frac{1}{2}$,則 cosC的值為$\frac{2\sqrt{3}-\sqrt{5}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.有五個命題如下:
(1)集合N*中最小元素是1;
(2)若a∈N*,b∈N*,則(a-b)∈N*;
(3)空集是任何集合的真子集;
(4)區(qū)間[2,4]是函數(shù)f(x)=x2-2x+3的一個單調(diào)增區(qū)間;
(5)若集合A={x|1<x<3},集合B={t|1<t<3},則A≠B;
其中正確的命題的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知x,y,z∈R*,滿足x-2y+3z=0,則$\frac{{y}^{2}}{xz}$的最小值是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,AB是圓O的一條切線,切點(diǎn)為B,直線ABD,CFD,CGE都是圓O的割線,已知AC=AB.
(1)若CG=1,CD=4,求$\frac{DE}{GF}$的值;
(2)求證:FG∥AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ex+ax,曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=1.
(1)求實(shí)數(shù)a的值及函數(shù)f(x)的單調(diào)區(qū)間;
(2)若b>0,f(x)≥b(b-1)x+c,求b2c的最大值.

查看答案和解析>>

同步練習(xí)冊答案