【題目】在直角坐標(biāo)系中,圓的方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求圓的極坐標(biāo)方程與直線的直角坐標(biāo)方程;
(2)設(shè)直線與圓相交于,兩點(diǎn),求圓在,處兩條切線的交點(diǎn)坐標(biāo).
【答案】(1)圓的極坐標(biāo)方程為,直線的直角坐標(biāo)方程為;(2).
【解析】
(1)由題意結(jié)合直角坐標(biāo)方程與極坐標(biāo)方程的轉(zhuǎn)化公式可得圓的極坐標(biāo)方程;轉(zhuǎn)化直線的極坐標(biāo)方程為,再利用直角坐標(biāo)方程與極坐標(biāo)方程的轉(zhuǎn)化公式即可得直線的直角坐標(biāo)方程;
(2)由題意聯(lián)立方程組可得,的坐標(biāo),結(jié)合直線與圓相切的性質(zhì)、直線方程的求解即可得兩切線方程,聯(lián)立方程即可得解.
(1)圓的方程可變?yōu)?/span>,
所以圓的極坐標(biāo)方程為即;
直線的極坐標(biāo)方程可變?yōu)?/span>,
所以直線的直角坐標(biāo)方程為即;
(2)由題意聯(lián)立方程組,解得或,
不妨設(shè)點(diǎn),,設(shè)過,處的切線分別為,,
圓的圓心為,半徑為,
易得,
由直線的斜率可得直線的斜率,
所以直線的方程為即,
由可得,
所以圓在,處兩條切線的交點(diǎn)坐標(biāo)為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,點(diǎn),點(diǎn)是曲線上的動(dòng)點(diǎn),為線段的中點(diǎn).
(1)寫出曲線的參數(shù)方程,并求出點(diǎn)的軌跡的直角坐標(biāo)方程;
(2)已知點(diǎn),直線與曲線的交點(diǎn)為,若線段的中點(diǎn)為,求線段長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求直線與曲線的普通方程;
(2)若直線與曲線交于、兩點(diǎn),點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元五世紀(jì),數(shù)學(xué)家祖沖之估計(jì)圓周率的值的范圍是:,為紀(jì)念數(shù)學(xué)家祖沖之在圓周率研究上的成就,某教師在講授概率內(nèi)容時(shí)要求學(xué)生從小數(shù)點(diǎn)后的6位數(shù)字1,4,1,5,9,2中隨機(jī)選取兩個(gè)數(shù)字做為小數(shù)點(diǎn)后的前兩位(整數(shù)部分3不變),那么得到的數(shù)字大于3.14的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元五世紀(jì),數(shù)學(xué)家祖沖之估計(jì)圓周率的值的范圍是:,為紀(jì)念數(shù)學(xué)家祖沖之在圓周率研究上的成就,某教師在講授概率內(nèi)容時(shí)要求學(xué)生從小數(shù)點(diǎn)后的6位數(shù)字1,4,1,5,9,2中隨機(jī)選取兩個(gè)數(shù)字做為小數(shù)點(diǎn)后的前兩位(整數(shù)部分3不變),那么得到的數(shù)字大于3.14的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求直線與曲線的普通方程;
(2)若直線與曲線交于、兩點(diǎn),點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的左、右頂點(diǎn)分別為,,上、下頂點(diǎn)分別為,,四邊形的面積為,坐標(biāo)原點(diǎn)O到直線的距離為.
(1)求橢圓C的方程;
(2)若直線l與橢圓C相交于A,B兩點(diǎn),點(diǎn)P為橢圓C上異于A,B的一點(diǎn),四邊形為平行四邊形,探究:平行四邊形的面積是否為定值?若是,求出此定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù),試研究函數(shù)的極值情況;
(2)記函數(shù)在區(qū)間內(nèi)的零點(diǎn)為,記,若在區(qū)間內(nèi)有兩個(gè)不等實(shí)根,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com