6.已知函數(shù)f(x)=5sin(2x+α) 的圖象關(guān)于y軸對(duì)稱,則α=( 。
A.kπ,k∈zB.(2k+1)π,k∈zC.2kπ+$\frac{π}{2}$,k∈zD.kπ+$\frac{π}{2}$,k∈z

分析 根據(jù)正弦函數(shù)的對(duì)稱軸公式計(jì)算.

解答 解:令2x+α=$\frac{π}{2}$+kπ得x=$\frac{π}{4}$+$\frac{kπ}{2}$-$\frac{α}{2}$,k∈Z,
令$\frac{π}{4}$+$\frac{kπ}{2}$-$\frac{α}{2}$=0得α=$\frac{π}{2}$+kπ,k∈Z.
故選:D.

點(diǎn)評(píng) 本題考查了正弦函數(shù)的圖象與性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.有6名乒乓球運(yùn)動(dòng)員分別來自3個(gè)不同國(guó)家,每一個(gè)國(guó)家2人,他們排成一排,列隊(duì)上場(chǎng),要求同一國(guó)家的人不能相鄰,那么不同的排法有240.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.從參加數(shù)學(xué)競(jìng)賽的學(xué)生中抽出20名學(xué)生,將其成績(jī)(均為整數(shù))整理后畫出的頻率分布直方圖如圖所示.觀察圖形,回答下列問題:

(1)[79.5,89.5)這一組的頻率和頻數(shù)分別為多少?
(2)估計(jì)該次數(shù)學(xué)競(jìng)賽的及格率(60分及以上為及格);
(3)若從第一組和第三組的所有學(xué)生中隨機(jī)抽取兩人,求他們的成績(jī)相差不超過10分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=$\frac{alnx}{x}$(a∈R)的圖象與直線x-2y=0相切,當(dāng)函數(shù)g(x)=f(f(x))-t恰有一個(gè)零點(diǎn)時(shí),實(shí)數(shù)t的取值范圍是{0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知點(diǎn)A在直線y=2x上,點(diǎn)B的坐標(biāo)為(1,1),O為坐標(biāo)原點(diǎn),則$\overrightarrow{OA}•\overrightarrow{OB}$=6,則|$\overrightarrow{OA}$|=2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.命題“?x∈R,x2+x+1≥0”的否定為(  )
A.$?{x_0}∈R,x_0^2+{x_0}+1≥0$B.$?{x_0}∈R,x_0^2+{x_0}+1<0$
C.?x∈R,x2+x+1≤0D.?x∈R,x2+x+1<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在極坐標(biāo)系中(0≤θ<2π),曲線ρcosθ=-1與曲線ρ=2sinθ的交點(diǎn)的極坐標(biāo)為$(\sqrt{2},\frac{3}{4}π)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)$y=tan(x+\frac{π}{6})+2$的定義域是{x|x≠kπ+$\frac{π}{3}$,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有女子善織,日益功,疾,初日織五尺,今一月織九匹三丈(1匹=40尺,一丈=10尺),問日益幾何?”其意思為:“有一女子擅長(zhǎng)織布,每天比前一天更加用功,織布的速度也越來越快,從第二天起,每天比前一天多織相同量布,第一天織5尺,一月織了九匹三丈,問每天增加多少尺布?”若一個(gè)月按30天算,則每天增加量為( 。
A.$\frac{1}{2}$尺B.$\frac{8}{15}$尺C.$\frac{16}{29}$尺D.$\frac{16}{31}$尺

查看答案和解析>>

同步練習(xí)冊(cè)答案