17.已知9a=2b=$\frac{1}{36}$,求$\frac{1}{a}$+$\frac{2}$的值.

分析 利用已知條件求出然后利用對(duì)數(shù)的運(yùn)算法則求解即可.

解答 解:9a=2b=$\frac{1}{36}$,可得a=${log}_{9}\frac{1}{36}$=${log}_{3}\frac{1}{6}$,
$\frac{1}{a}$=${log}_{6}\frac{1}{3}$,b=${log}_{2}\frac{1}{36}$
$\frac{2}$=${log}_{6}\frac{1}{2}$,
$\frac{1}{a}$+$\frac{2}$=${log}_{6}\frac{1}{3}+{log}_{6}\frac{1}{2}$=${log}_{6}\frac{1}{6}$=-1.

點(diǎn)評(píng) 本題考查對(duì)數(shù)的運(yùn)算法則的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.觀察下列算式:1×$\frac{1}{2}$=1-$\frac{1}{2}$,2×$\frac{2}{3}$=2-$\frac{2}{3}$.3×$\frac{3}{4}$=3-$\frac{3}{4}$,…,
(1)猜想并寫(xiě)出第n個(gè)等式;
(2)證明你寫(xiě)出的等式的正確性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖,在△ABC上,D是BC上的點(diǎn),且AC=CD,2AC=$\sqrt{3}$AD,AB=2AD,則sinB等于( 。
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{6}$D.$\frac{\sqrt{3}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x+y≤2}\\{y-x≤2}\\{y≥1}\end{array}\right.$,則(x+3)2+y2的取值范圍是[5,17].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.求下列雙曲線的標(biāo)準(zhǔn)方程:
(1)經(jīng)過(guò)兩點(diǎn)(-4,0)、(4$\sqrt{2}$,-2):
(2)與雙曲線$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{3}$=1有相同的漸近線,且過(guò)點(diǎn)(2$\sqrt{6}$,$-2\sqrt{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)f(x)在[0,1]上連續(xù),在(0,1)內(nèi)可導(dǎo),且f(1)=0,試證至少存在一點(diǎn)ξ∈(0,1),使f′(ξ)=-$\frac{3f(ξ)}{ξ}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知直線的傾斜角為45°,則該直線的斜率為(  )
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖所示,P是角α得終邊與單位圓的交點(diǎn),PM⊥x軸于M,AT和A′T′均是單位圓的切線,則角α的( 。
A.正弦值是PM,正切線是A′T′B.正弦值是MP,正切線是A′T′
C.正弦值是MP,正切線是ATD.正弦值是PM,正切線是AT

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.不等式$\frac{1}{1+lgx}$+$\frac{1}{1-lgx}$>2的解集為( 。
A.($\frac{1}{10}$,1)∪(1,10)B.($\frac{1}{10}$,1)∪(2,10)C.($\frac{1}{10}$,10)D.(1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案