19.在(1-3x)6的展開(kāi)式中,x2的系數(shù)為135.(用數(shù)字作答)

分析 在二項(xiàng)展開(kāi)式的通項(xiàng)公式中,令x的冪指數(shù)等于0,求出r的值,即可求得展開(kāi)式中x2的系數(shù).

解答 解:展開(kāi)式的通項(xiàng)為T(mén)r+1=(-3)rC6rxr
令r=2得到展開(kāi)式中x2的系數(shù)是C6232=135,
故答案為:135.

點(diǎn)評(píng) 本題是基礎(chǔ)題,考查利用二項(xiàng)展開(kāi)式的通項(xiàng)公式解決二項(xiàng)展開(kāi)式的特定項(xiàng)問(wèn)題.考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知a,b,c為△ABC的三個(gè)角A,B,C所對(duì)的邊,若3sinBcosC=sinC(1-3cosB),則sinC:sinA=(  )
A.2:3B.4:3C.3:1D.3:2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=asinx•cosx-$\sqrt{3}$acos2x+$\frac{{\sqrt{3}}}{2}$a+b(a>0).
(Ⅰ)寫(xiě)出函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)x∈[0,$\frac{π}{2}$],f(x)的最小值是-$\sqrt{3}$,最大值是2,求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知圓O:x2+y2=r2(r>0)及圓上的點(diǎn)A(0,-r),過(guò)點(diǎn)A的直線(xiàn)l交圓于另一點(diǎn)B,交x軸于點(diǎn)C,若OC=BC,則直線(xiàn)l的斜率為±$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知a∈R,i是虛數(shù)單位,若(1-i)(1+ai)=2,則a=( 。
A.1B.$\sqrt{5}$C.3D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)f(x)=sin2ωx+$\sqrt{3}$sinωxsin(ωx+$\frac{π}{2}}$)(ω>0)的最小正周期為π,則y=f(x)的對(duì)稱(chēng)中心為($\frac{π}{12}+\frac{kπ}{2}$,$\frac{1}{2}$),k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.24+8$\sqrt{3}$B.16=12$\sqrt{3}$C.24+12$\sqrt{3}$D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a1=-20.在區(qū)間(3,5)內(nèi)任取一個(gè)實(shí)數(shù)作為數(shù)列{an}的公差,則Sn的最小值僅為S6的概率為( 。
A.$\frac{1}{5}$B.$\frac{1}{6}$C.$\frac{3}{14}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某省2015年全省高中男生身高統(tǒng)計(jì)調(diào)查數(shù)據(jù)顯示:全省100000名男生的身高服從正態(tài)分布N(170.5,16).現(xiàn)從某校高三年級(jí)男生中隨機(jī)抽取50名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于157.5cm和187.5cm之間,將測(cè)量結(jié)果按如下方式分成6組:第一組[157.5,162.5),第二組[162.5,167.5),…,第6組[182.5,187.5),圖是按上述分組方法得到的頻率分布直方圖.
(1)試評(píng)估我校高三年級(jí)男生在全省高中男生中的平均身高狀況;
(2)求這50名男生身高在177.5cm以上(177.5cm)的人數(shù);
(3)在這50名男生身高在177.5cm以上(含177.5cm)的人中任意抽取2人,該2人中身高排名(以高到低)在全省前130名的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.
(參考數(shù)據(jù):若ξ~N(μ,σ2),P(μ-σ<ξ≤μ+σ)=0.6826,P(μ-2σ<ξ≤μ+2σ)=0.9544,P(μ-3σ<ξ≤μ+3σ)=0.9974.)

查看答案和解析>>

同步練習(xí)冊(cè)答案