A. | 2$\sqrt{3}$ | B. | $\frac{7\sqrt{3}}{3}$ | C. | $\frac{8\sqrt{3}}{3}$ | D. | 4$\sqrt{3}$ |
分析 由題意設(shè)出Q(2a,0)a>0,R(0,b),b<0,求出a,b的值,通過(guò)五點(diǎn)法求出函數(shù)的解析式,即可求出A.
解答 解:∵函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|≤$\frac{π}{2}$)與坐標(biāo)軸的三個(gè)交點(diǎn)P、Q、R滿足P(1,0)、M(2,-2)為線段QR的中點(diǎn),
∴設(shè)Q(2a,0),a>0,R(0,b),b<0,
則$\left\{\begin{array}{l}{\frac{2a+0}{2}=2}\\{\frac{0+b}{2}=-2}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=2}\\{b=-4}\end{array}\right.$,
即Q(4,0),R(0,-4),
則函數(shù)的周期T=2×(4-1)=6,
即$\frac{2π}{ω}=6$,即ω=$\frac{π}{3}$,
則f(x)=Asin($\frac{π}{3}$x+φ),
∵f(1)=0,且f(0)=-4,
∴Asin($\frac{π}{3}$+φ)=0,且Asinφ=-4,
即$\frac{π}{3}$+φ=kπ,k∈Z,
則φ=kπ-$\frac{π}{3}$,
∵φ|≤$\frac{π}{2}$,
∴當(dāng)k=0時(shí),φ=-$\frac{π}{3}$,
則Asin(-$\frac{π}{3}$)=-4,
即$-\frac{\sqrt{3}}{2}$A=-4,
解得A=$\frac{8}{\sqrt{3}}$=$\frac{8\sqrt{3}}{3}$,
故選:C
點(diǎn)評(píng) 本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,求得Q點(diǎn)與R點(diǎn)的坐標(biāo)是關(guān)鍵,考查識(shí)圖、運(yùn)算與求解能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 大前提錯(cuò)誤 | B. | 小前提錯(cuò)誤 | C. | 結(jié)論正確 | D. | 推理形式錯(cuò)誤 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3π | B. | 6π | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2 | C. | $\sqrt{15}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,4) | B. | (-∞,4] | C. | (4,+∞) | D. | [4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $|\overrightarrow a|=\sqrt{x_1^2+y_1^2}$ | B. | $\overrightarrow a•\overrightarrow b={x_1}{x_2}+{y_1}{y_2}$ | ||
C. | $\overrightarrow a⊥\overrightarrow b?{x_1}{x_2}+{y_1}{y_2}=0$ | D. | $\overrightarrow a∥\overrightarrow b={x_1}{y_2}+{x_2}{y_1}=0$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com