函數(shù)f(x)=xcosx+1,x∈(-5,5)的最大值為M,最小值為m,則M+m等于( )
A.0
B.1
C.2
D.4
【答案】分析:設g(x)=xcosx 則f(x)=g(x)+1,根據(jù)函數(shù)的奇偶性可得g(x)在(-5,5)上關于原點對稱,再根據(jù)函數(shù)的單調性可得:f(x)取到最大值M時,相對應的x下的g(x)也取最大值M'=M-1,同理f(x)有最小值m時,g(x)也取最小值m'=m-1,根據(jù)對稱性可得M'+m'=0,進而得到答案.
解答:解:設g(x)=xcosx 則f(x)=g(x)+1
因為g(-x)=-g(x),且x∈(-5,5),
所以g(x)在(-5,5)上關于原點對稱.
因為f(x)和g(x)單調性相同,
所以f(x)取到最大值M時,相對應的x下的g(x)也取最大值M-1,同理f(x)有最小值m時,g(x)也取最小值m-1
設g(x)最大值M'=M-1 最小值m'=m-1
因為g(x)關于坐標原點對稱可得所以(M-1)+(m-1)=0,
所以 M+m=2.
故選C.
點評:本題主要考查函數(shù)的有關性質,即函數(shù)的單調性與函數(shù)的奇偶性的綜合應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

有一學生對函數(shù)f(x)=xcosx進行了研究,得到如下五條結論:①函數(shù)f(x)在(一π,0)上單調遞增,在(0,π)上單調遞減;
②存在常數(shù)M>0,使|f(x)|≤M|x|對一切實數(shù)x均成立;
③函數(shù)y=f(x)圖象的一個對稱中心是(
π2
,0)
;
④函數(shù)y=f(x)的圖象與x軸有無窮多個公共點,且任意相鄰兩公共點間的距離相等;
⑤函數(shù)y=f(x)的圖象與直線.y=x有無窮多個公共點,且任意相鄰兩公共點間的距離相等;其中正確結論的序號是
②⑤
②⑤
.(寫出所有你認為正確的結論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=xcosx+1,x∈(-5,5)的最大值為M,最小值為m,則M+m等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某同學對函數(shù)f(x)=xcosx進行研究后,得出以下五個結論:
①函數(shù)y=f(x)的圖象是中心對稱圖形;
②對任意實數(shù)x,f(x)≤|x|均成立;
③函數(shù)y=f(x)的圖象與x軸有無窮多個公共點,且任意相鄰兩點的距離相等;
④函數(shù)y=f(x)的圖象與直線y=x有無窮多個公共點,且任意相鄰兩點的距離相等;
⑤當常數(shù)k滿足|k|>1時,函數(shù)y=f(x)的圖象與直線y=kx有且僅有一個公共點.其中所有正確結論的序號是
①②④⑤
①②④⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xcosx,則f′(
π2
)的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•蚌埠模擬)某同學對函數(shù)f(x)=xcosx進行研究后,得出以下四個結論:
①函數(shù)y=f(x)的圖象是中心對稱圖形;
②對任意實數(shù)x,|f(x)|≤|x|均成立;
③函數(shù)y=f(x)的圖象與x軸有無窮多個公共點,且任意相鄰兩公共點間的距離相等;
④函數(shù)y=f(x)的圖象與直線y=x有無窮多個公共點,且任意相鄰兩公共點間的距離相等;
其中所有正確結論的序號是
①②④
①②④

查看答案和解析>>

同步練習冊答案