【題目】已知點,拋物線的焦點為,射線與拋物線相交于點,與其準(zhǔn)線相交于點,則( )

A. B. C. D.

【答案】C

【解析】

求出拋物線C的焦點F的坐標(biāo),從而得到AF的斜率k=-2.過MMPlP,根據(jù)拋物線物定義得|FM|=|PM|.Rt△MPN中,根據(jù)tan∠NMP=﹣k=2,從而得到|PN|=2|PM|,進而算出|MN||PM|,由此即可得到|FM|:|MN|的值.

∵拋物線Cy2=4x的焦點為F(1,0),點A坐標(biāo)為(0,2),

∴拋物線的準(zhǔn)線方程為lx=﹣1,直線AF的斜率為k=﹣2,

MMPlP,根據(jù)拋物線物定義得|FM|=|PM|,

∵Rt△MPN中,tan∠NMP=﹣k=2,

2,可得|PN|=2|PM|,

|MN||PM|,

因此可得|FM|:|MN|=|PM|:|MN|=1:

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

已知曲線的極坐標(biāo)方程為,以極點為直角坐標(biāo)原點,以極軸為軸的正半軸建立平面直角坐標(biāo)系,將曲線向左平移個單位長度,再將得到的曲線上的每一個點的橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變,得到曲線

(1)求曲線的直角坐標(biāo)方程;

(2)已知直線的參數(shù)方程為,(為參數(shù)),點為曲線上的動點,求點到直線距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】)已知c0,關(guān)于x的不等式:x+|x-2c|≥2的解集為R.求實數(shù)c的取值范圍;

(Ⅱ)若c的最小值為m,又p、q、r是正實數(shù),且滿足p+q+r=3m,求證:p2+q2+r2≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,拋物線的焦點為,射線與拋物線相交于點,與其準(zhǔn)線相交于點,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一次數(shù)學(xué)考試后,對高三文理科學(xué)生進行抽樣調(diào)查,調(diào)查其對本次考試的結(jié)果滿意或不滿意,現(xiàn)隨機抽取名學(xué)生的數(shù)據(jù)如下表所示:

滿意

不滿意

總計

文科

22

18

40

理科

48

12

60

總計

70

30

100

1)根據(jù)數(shù)據(jù),有多大的把握認(rèn)為對考試的結(jié)果滿意與科別有關(guān);

2)用分層抽樣方法在感覺不滿意的學(xué)生中隨機抽取名,理科生應(yīng)抽取幾人;

3)在(2)抽取的名學(xué)生中任取2名,求文科生人數(shù)的期望.其中

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,,,,分別為線段,上的點,且,.

(1)證明:;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的左焦點為且離心率為,為橢圓上任意一點,的取值范圍為.

(1)求橢圓的方程;

(2)如圖,設(shè)圓是圓心在橢圓上且半徑為的動圓,過原點作圓的兩條切線,分別交橢圓于,兩點.是否存在使得直線與直線的斜率之積為定值?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解高二年級學(xué)生某次數(shù)學(xué)考試成績的分布情況,從該年級的1120名學(xué)生中隨機抽取了100名學(xué)生的數(shù)學(xué)成績,發(fā)現(xiàn)都在內(nèi)現(xiàn)將這100名學(xué)生的成績按照,,,,分組后,得到的頻率分布直方圖如圖所示,則下列說法正確的是  

A. 頻率分布直方圖中a的值為

B. 樣本數(shù)據(jù)低于130分的頻率為

C. 總體的中位數(shù)保留1位小數(shù)估計為

D. 總體分布在的頻數(shù)一定與總體分布在的頻數(shù)相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距與短軸長相等,長軸長為,設(shè)過右焦點F傾斜角為的直線交橢圓MA、B兩點.

(1)求橢圓M的方程;

(2)求證:

(3)設(shè)過右焦點F且與直線AB垂直的直線交橢圓MC、D,求四邊形ABCD面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案