11.已知公差不為零的等差數(shù)列{an},若a1=1,且a1,a2,a5成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=2n,求數(shù)列{bn-an}的前n項和Sn

分析 (1)通過a2=1+d、a5=1+4d,利用a1,a2,a5成等比數(shù)列計算可知公差d=2,進(jìn)而可得結(jié)論;
(2)分別利用等差數(shù)列、等比數(shù)列的求和公式計算,相加即可.

解答 解:(1)依題意可知,a2=1+d,a5=1+4d,
∵a1,a2,a5成等比數(shù)列,
∴(1+d)2=1+4d,即d2=2d,
解得:d=2或d=0(舍),
∴an=1+2(n-1)=2n-1;
(2)由(1)可知等差數(shù)列{an}的前n項和Pn=$\frac{n(1+2n-1)}{2}$=n2,
∵bn=2n,
∴數(shù)列{bn}的前n項和Qn=$\frac{2(1-{2}^{n})}{1-2}$=2n+1-2,
∴Sn=2n+1-n2-2.

點(diǎn)評 本題考查數(shù)列的通項及前n項和,考查等差數(shù)列、等比數(shù)列的求和公式,考查分組求和法,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知O,N,P在所在△ABC的平面內(nèi),且$|{\overrightarrow{OA}}|=|{\overrightarrow{OB}}|=|{\overrightarrow{OC}}|,\overrightarrow{NA}+\overrightarrow{NB}+\overrightarrow{NC}$=$\overrightarrow 0$,且$\overrightarrow{PA}•\overrightarrow{PB}=\overrightarrow{PB}•\overrightarrow{PC}=\overrightarrow{PA}•\overrightarrow{PC}$,則O,N,P分別是△ABC的( 。
A.重心  外心  垂心B.重心  外心  內(nèi)心
C.外心  重心  垂心D.外心  重心  內(nèi)心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知p:?x∈R,mx2+1>0,q:?x∈R,x2+mx+1≤0.
(1)寫出命題p的否定?p,命題q的否定?q;
(2)若?p∨?q為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖所示,四棱錐P  ABCD的底面ABCD是平行四邊形,BD=$\sqrt{2}$,PC=$\sqrt{7}$,PA=$\sqrt{5}$,∠CDP=90°,E、F分別是棱AD、PC的中點(diǎn).
(1)證明:EF∥平面PAB;
(2)求BD與PA所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知數(shù)列{an}中,a1=1,前n項和為Sn,且點(diǎn)P(an,an+1)在直線y=x+1上,則$\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{S_n}$=( 。
A.$\frac{2n}{n+1}$B.$\frac{2}{n(n+1)}$C.$\frac{n(n+1)}{2}$D.$\frac{n}{2(n+1)}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.下列命題:
①若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,則a1+a2+a3+a4+a5=31;
②隨機(jī)變量X服從正態(tài)分布N(1,2),則P(X<0)=P(X>2);
③若二項式${({x+\frac{2}{x^2}})^n}$的展開式中所有項的系數(shù)之和為243,則展開式中x-4的系數(shù)是40
④連擲兩次骰子得到的點(diǎn)數(shù)分別為m,n,記向量$\overrightarrow{a}$=(m,n)與向量$\overrightarrow$=(1,-1)的夾角為θ,則θ∈(0,$\frac{π}{2}$]的概率是$\frac{7}{12}$.
正確命題的序號為①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某校高三共有三個班,其各班人數(shù)如表:
班級男生數(shù)女生數(shù)總數(shù)
高三(1)302050
高三(2)303060
高三(3)352055
(1)從三個班中選一名學(xué)生會主席,有多少種不同的選法?
(2)從(1)班、(2)班男生中或從(3)班女生中選一名學(xué)生任學(xué)生會生活部部長,有多少種不同的選法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.將點(diǎn)的極坐標(biāo)(2,$\frac{π}{6}$)化為直角坐標(biāo)為($\sqrt{3}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)計算:$\frac{{(1-i)+(2+\sqrt{5}i)}}{i}$(其中i為虛數(shù)單位);
(2)若復(fù)數(shù)Z=(2m2+m-1)+(4m2-8m+3)i,(m∈R)的共軛復(fù)數(shù)$\overline Z$對應(yīng)的點(diǎn)在第一象限,求實數(shù)m的取值集合.

查看答案和解析>>

同步練習(xí)冊答案