分析 把方程f(x)=kx+k+1的根轉(zhuǎn)化為函數(shù)f(x)的圖象和y=kx+k+1的圖象的交點(diǎn)在同一坐標(biāo)系內(nèi)畫出圖象由圖可得結(jié)論.
解答 解:因?yàn)殛P(guān)于x的方程f(x)=kx+k+1(k∈R且k≠-1)有4個不同的根,
就是函數(shù)f(x)的圖象與y=kx+k+1的圖象有4個不同的交點(diǎn),
f(x)是以2為周期的偶函數(shù),當(dāng)x∈[0,1]時,f(x)=x,
所以可以得到函數(shù)f(x)的圖象,
又因?yàn)閥=kx+k+1=k(x+1)+1過定點(diǎn)(-1,1),
在同一坐標(biāo)系內(nèi)畫出它們的圖象如圖,
由圖得y=kx+k+1=k(x+1)+1在直線AB和y=1中間時符合要求,
而KAB=-$\frac{1}{3}$,
所以k的取值范圍是:-$\frac{1}{3}$<k<0
故答案為:$(-\frac{1}{3},0)$.
點(diǎn)評 本題考查根的個數(shù)的應(yīng)用和數(shù)形結(jié)合思想的應(yīng)用.?dāng)?shù)形結(jié)合的應(yīng)用大致分兩類:一是以形解數(shù),即借助數(shù)的精確性,深刻性來講述形的某些屬性;二是以形輔數(shù),即借助與形的直觀性,形象性來揭示數(shù)之間的某種關(guān)系,用形作為探究解題途徑,獲得問題結(jié)果的重要工具.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{77}$ | B. | 40 | C. | $\frac{1}{40}$ | D. | $\frac{1}{39}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20 | B. | -15 | C. | -20 | D. | 15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{{\sqrt{5}}}{5}$,1) | B. | (0,$\frac{\sqrt{5}}{5}$) | C. | $(\frac{{\sqrt{3}}}{3}\;,\;\;1)$ | D. | $(0\;,\;\;\frac{{\sqrt{3}}}{3})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com