【題目】設(shè)f(x)=|x﹣a|,a∈R
(Ⅰ)當(dāng)a=5,解不等式f(x)≤3;
(Ⅱ)當(dāng)a=1時(shí),若x∈R,使得不等式f(x﹣1)+f(2x)≤1﹣2m成立,求實(shí)數(shù)m的取值范圍.
【答案】解:(I)a=5時(shí)原不等式等價(jià)于|x﹣5|≤3即﹣3≤x﹣5≤3,2≤x≤8,
∴解集為{x|2≤x≤8};
(II)當(dāng)a=1時(shí),f(x)=|x﹣1|,
令 ,
由圖象知:當(dāng) 時(shí),g(x)取得最小值 ,由題意知: ,
∴實(shí)數(shù)m的取值范圍為 .
【解析】(Ⅰ)將a=5代入解析式,然后解絕對(duì)值不等式,根據(jù)絕對(duì)值不等式的解法解之即可;(Ⅱ)先利用根據(jù)絕對(duì)值不等式的解法去絕對(duì)值,然后利用圖象研究函數(shù)的最小值,使得1﹣2m大于等于不等式左側(cè)的最小值即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:x+ay﹣1=0是圓C:x2+y2﹣4x﹣2y+1=0的一條對(duì)稱軸,過點(diǎn)A(﹣4,a)作圓C的兩條切線,切點(diǎn)分別為B、D,則直線BD的方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為θ= ,曲線C的參數(shù)方程為 .
(1)寫出直線l與曲線C的直角坐標(biāo)方程;
(2)過點(diǎn)M平行于直線l1的直線與曲線C交于A、B兩點(diǎn),若|MA||MB|= ,求點(diǎn)M軌跡的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖的算法程序框圖,輸出的結(jié)果是( )
A.211﹣2
B.211﹣1
C.210﹣2
D.210﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信是現(xiàn)代生活進(jìn)行信息交流的重要工具,隨機(jī)對(duì)使用微信的60人進(jìn)行了統(tǒng)計(jì),得到如下數(shù)據(jù)統(tǒng)計(jì)表,每天使用微信時(shí)間在兩小時(shí)以上的人被定義為“微信達(dá)人”,不超過2兩小時(shí)的人被定義為“非微信達(dá)人”,己知“非微信達(dá)人”與“微信達(dá)人”人數(shù)比恰為3:2.
(1)確定x,y,p,q的值,并補(bǔ)全須率分布直方圖;
(2)為進(jìn)一步了解使用微信對(duì)自己的日不工作和生活是否有影響,從“微信達(dá)人”和“非微信達(dá)人”60人中用分層抽樣的方法確定10人,若需從這10人中隨積選取3人進(jìn)行問卷調(diào)查,設(shè)選取的3人中“微信達(dá)人”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
使用微信時(shí)間(單位:小時(shí)) | 頻數(shù) | 頻率 |
(0,0.5] | 3 | 0.05 |
(0.5,1] | x | p |
(1,1.5] | 9 | 0.15 |
(1.5,2] | 15 | 0.25 |
(2,2.5] | 18 | 0.30 |
(2.5,3] | y | q |
合計(jì) | 60 | 1.00 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的前n項(xiàng)和為Sn , 且6Sn=3n+1+a(n∈N+)
(1)求a的值及數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(1﹣an)log3(an2an+1),求 的前n項(xiàng)和為Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】斐波拉契數(shù)列0,1,1,2,3,5,8…是數(shù)學(xué)史上一個(gè)著名的數(shù)列,定義如下:F(0)=0,F(xiàn)(1)=1,F(xiàn)(n)=F(n﹣1)+F(n﹣2)(n≥2,n∈N).某同學(xué)設(shè)計(jì)了一個(gè)求解斐波拉契數(shù)列前15項(xiàng)和的程序框圖,那么在空白矩形和判斷框內(nèi)應(yīng)分別填入的詞句是( )
A.c=a,i≤14
B.b=c,i≤14
C.c=a,i≤15
D.b=c,i≤15
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0)經(jīng)過點(diǎn)P(2, ),離心率e= ,直線l的漸近線為x=4.
(1)求橢圓C的方程;
(2)經(jīng)過橢圓右焦點(diǎn)D的任一直線(不經(jīng)過點(diǎn)P)與橢圓交于兩點(diǎn)A,B,設(shè)直線l相交于點(diǎn)M,記PA,PB,PM的斜率分別為k1 , k2 , k3 , 問是否存在常數(shù)λ,使得k1+k2=λk3?若存在,求出λ的值若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù) 圖象上的點(diǎn) 向右平移m(m>0)個(gè)單位長(zhǎng)度得到點(diǎn)P',若P'位于函數(shù)y=cos2x的圖象上,則( )
A. ,m的最小值為
B. ,m的最小值為
C. ,m的最小值為
D. ,m的最小值為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com