2.下列表示:
①{0}=∅;②∅⊆{0};③$\sqrt{3}$∈{x|x≤2};④{x∈N|$\frac{6}{6-x}$∈N}={0,2,3,4,5}中,
錯(cuò)誤的是( 。
A.①②B.①③C.①④D.③④

分析 根據(jù)元素與集合的關(guān)系進(jìn)行判斷.

解答 解:對于①{0}=∅和②∅⊆{0}:是集合與集合之間的關(guān)系,空集是任何集合的子集,∴①錯(cuò),②對.
對于③$\sqrt{3}$∈{x|x≤2},集合表示有小于2的所以數(shù)構(gòu)成,$\sqrt{3}<2$,∴③對.
對于④{x∈N|$\frac{6}{6-x}$∈N},∵$\frac{6}{6-x}$∈N,∴元素為0,3,4,∴④錯(cuò).
故選C.

點(diǎn)評 本題主要考查元素與集合的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)是周期為2的奇函數(shù),當(dāng)-1≤x≤0時(shí),f(x)=x2+x,則$f(\frac{2017}{2})$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知f(n)=1•n+2•(n-1)+3•(n-2)+…+n•1(n∈N*),那么f(n+1)-f(n)=$\frac{(n+1)(n+2)}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=cos(2x+φ)(0≤φ≤π)是R上的奇函數(shù),則φ的值是(  )
A.πB.$\frac{π}{2}$C.$\frac{π}{4}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖所示,在多面體EF-ABC中,△ABC是邊長為2的等邊三角形,O為BC的中點(diǎn),EF∥AO,EA=EC=EF=$\sqrt{3}$.
(1)若平面ABC∩平面BEF=l,證明:EF∥l;
(2)求證:AC⊥BE;
(3)若BE=$\sqrt{5}$,EO=$\sqrt{3}$,求點(diǎn)B到平面AFO的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求下列函數(shù)的值域
(1)y=-$\frac{4}{x}$,x∈[-3,0)∪(0,1];             
(2)y=x2+4x+1,x∈[-3,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列各組函數(shù)為同一函數(shù)的是( 。
A.f(x)=1;g(x)=$\frac{x}{x}$B.f(x)=x-2;g(x)=$\frac{{x}^{2}-4}{x+2}$
C.f(x)=|x|;g(x)=$\sqrt{{x}^{2}}$D.f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$;g(x)=$\sqrt{{x}^{2}-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列函數(shù)是同一函數(shù)的是(  )
A.f(x)=$\frac{{x}^{2}-x}{x}$,g(x)=x-1B.f(u)=$\sqrt{\frac{1+u}{1-u}}$,g(v)=$\sqrt{\frac{1+v}{1-v}}$
C.f(x)=1,g(x)=x0D.f(x)=x,g(x)=$\sqrt{{x}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某個(gè)長方體被一個(gè)平面所截,得到的幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為( 。 
A.4B.2$\sqrt{2}$C.4$\sqrt{2}$D.8

查看答案和解析>>

同步練習(xí)冊答案