【題目】在每年的春節(jié)后,某市政府都會發(fā)動公務(wù)員參加植樹活動,林業(yè)部門在植樹前,為了保證樹苗的質(zhì)量,將在植樹前對樹苗進行檢測,現(xiàn)從同一種樹的甲、乙兩批樹苗中各抽測了10株樹苗,量出它們的高度如下(單位:厘米):
甲:37,21,31,20,29,19,32,23,25,33; 乙:10,30,47,27,46,14,26,10,44,46.
(1)你能用適當?shù)慕y(tǒng)計圖表示上面的數(shù)據(jù)嗎?
(2)根據(jù)你所畫的統(tǒng)計圖,對甲,乙兩種樹苗的高度作比較,寫出兩個統(tǒng)計結(jié)論.
【答案】(1)見解析(2)見解析
【解析】
(1)用莖葉圖表示兩組數(shù)據(jù),首先要先確定“莖”值,再將數(shù)據(jù)按“莖”值分組分類表示在“葉”的位置,將數(shù)據(jù)填入莖葉圖;
(2)根據(jù)填寫的莖葉圖,然后計算兩組數(shù)據(jù)的平均數(shù)、中位數(shù),從而可得甲、乙兩種樹苗高度的統(tǒng)計結(jié)論.
(1)用莖葉圖表示為:
(2) 統(tǒng)計結(jié)論:①甲種樹苗的平均高度小于乙種樹苗的平均高度;
②甲種樹苗比乙種樹苗長得更整齊;
③甲種樹苗的中位數(shù)為27,乙種樹苗的中位數(shù)為28.5;
④甲種樹苗的高度基本上是對稱的,而且大多數(shù)集中在均值附近,乙種樹苗的高度分布較為分散.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xoy中,直線l經(jīng)過點P(﹣1,0),其傾斜角為α,在以原點O為極點,x軸非負半軸為極軸的極坐標系中(取相同的長度單位),曲線C的極坐標方程為ρ2﹣6ρcosθ+1=0. (Ⅰ)若直線l與曲線C有公共點,求α的取值范圍;
(Ⅱ)設(shè)M(x,y)為曲線C上任意一點,求x+y的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】潮州統(tǒng)計局就某地居民的月收入調(diào)查了人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分
布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在)。
(1)求居民月收入在的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這人中分層抽樣方法抽出人作進一步分析,則月收入在的這段應(yīng)抽多少人?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) 是奇函數(shù),若函數(shù)f(x)在區(qū)間[﹣1,a﹣2]上單調(diào)遞增,則實數(shù)a的取值范圍是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知單調(diào)遞增的等比數(shù)列{an}滿足a2+a3+a4=28,且a3+2是a2,a4的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)若bn=,Sn=b1+b2+…+bn,對任意正整數(shù)n,Sn+(n+m)an+1<0恒成立,試求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)當a>0時,解關(guān)于x的不等式f(x)<0;
(2)若當a>0時,f(x)<0在x [1,2]上恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)為函數(shù)兩個不同零點.
(1)若,且對任意,都有,求;
(2)若,則關(guān)于的方程是否存在負實根?若存在,求出該負根的取值范圍,若不存在,請說明理由;
(3)若,且當時,的最大值為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司一下屬企業(yè)從事某種高科技產(chǎn)品的生產(chǎn).該企業(yè)第一年年初有資金2000萬元,將其投入生產(chǎn),到當年年底資金增長了50%.預計以后每年年增長率與第一年的相同.公司要求企業(yè)從第一年開始,每年年底上繳資金d萬元,并將剩余資金全部投入下一年生產(chǎn).設(shè)第n年年底企業(yè)上繳資金后的剩余資金為an萬元.
(Ⅰ)用d表示a1 , a2 , 并寫出an+1與an的關(guān)系式;
(Ⅱ)若公司希望經(jīng)過m(m≥3)年使企業(yè)的剩余資金為4000萬元,試確定企業(yè)每年上繳資金d的值(用m表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com