19.如圖,PA⊥⊙O所在平面,AB是⊙O的直徑,C是⊙O上一點(diǎn),AE⊥PC,求證:AE⊥BC.

分析 根據(jù)底面是圓,得到BC⊥AC,再根據(jù)PA⊥平面ABC得到PA⊥BC,證明BC⊥平面PAC,即可得出結(jié)論.

解答 證明:∵PA⊥平面ABC,∴PA⊥BC.
又∵AB是⊙O的直徑,∴BC⊥AC.
而PC∩AC=C,∴BC⊥平面PAC.
又∵AE在平面PAC內(nèi),∴BC⊥AE.
即AE⊥BC.

點(diǎn)評(píng) 本題考查直線與平面垂直的判定與性質(zhì),通過對(duì)已知條件的分析,得到線面垂直,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=x2-2|x|-1 (-3≤x≤3),
(1)請(qǐng)?jiān)谧鴺?biāo)系中直接畫出函數(shù)f(x)的圖象;
(2)指出函數(shù)f(x)的增減區(qū)間;
(3)指出函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知圓錐的底面半徑r=3,圓錐的高h(yuǎn)=4,則該圓錐的表面積等于(  )
A.12πB.15πC.21πD.24π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=x3-3x,若對(duì)于區(qū)間[-2,2]上任意兩個(gè)自變量的值x1,x2,都有|f(x1)-f(x2)|≤c,則實(shí)數(shù)c的最小值4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.(1+2i)(3-4i)(-2-i)=-20-15i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x•ex+e-x,x∈R.
(Ⅰ)求函數(shù)y=f(x)•ex的單調(diào)區(qū)間;
(Ⅱ)若對(duì)于任意的x>0,總有f(x)≥ax2+1,求實(shí)數(shù)a的取值范圍;
(Ⅲ)證明:對(duì)于任意的x1,x2,h其中x1<x2,h>0,總有f(x1)+f(x2)<f(x1-h)+f(x2+h).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)計(jì)算:${log_5}35+2{log_{\frac{1}{2}}}\sqrt{2}-{log_5}\frac{1}{50}-{log_5}14$;
(2)$設(shè){3^a}={4^b}=36,求\frac{2}{a}+\frac{1}的值$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在半徑為2,圓心角為變量的扇形OAB內(nèi)作一內(nèi)切圓P,再在扇形內(nèi)作一個(gè)與扇形兩半徑相切并與圓P外切的小圓Q,設(shè)圓P與圓Q的半徑之積為y.
(1)按下列要求寫出函數(shù)關(guān)系式:
①設(shè)∠AOB=2θ(0<θ<$\frac{π}{2}}$),將y表示成θ的函數(shù);
②設(shè)圓P的半徑x(0<x<1),將y表示成x的函數(shù).
(2)請(qǐng)你選用(1)中的一個(gè)函數(shù)關(guān)系式,求y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知P為橢圓$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1上任意一點(diǎn),F(xiàn)1、F2是橢圓的兩個(gè)焦點(diǎn),則下列關(guān)于“|PF1|•|PF2|的最大值和最小值”的說法中,正確的結(jié)論是(  )
A.有最大值$\sqrt{5}$+1和最小值4B.有最大值5和最小值4
C.有最大值5和最小值$\sqrt{5}$-1D.無最大值,最小值4

查看答案和解析>>

同步練習(xí)冊(cè)答案