7.已知函數(shù)f(x)=x3-3x,若對于區(qū)間[-2,2]上任意兩個(gè)自變量的值x1,x2,都有|f(x1)-f(x2)|≤c,則實(shí)數(shù)c的最小值4.

分析 由題意,對于定義域內(nèi)任意自變量都使得|f(x1)-f(x2)|≤c,可以轉(zhuǎn)化為求函數(shù)在定義域下的最值即可得解.

解答 解:f′(x)=3x2-3,
令f'(x)=0,即3x2-3=0.得x=±1.
當(dāng)x∈(-∞,-1)時(shí),f′(x)>0,函數(shù)f(x)在此區(qū)間單調(diào)遞增;
當(dāng)x∈(-1,1)時(shí),f′(x)<0,函數(shù)f(x)在此區(qū)間單調(diào)遞減;
因?yàn)閒(-1)=2,f(1)=-2,
所以當(dāng)x∈[-2,2]時(shí),f(x)max=2,f(x)min=-2.
則對于區(qū)間[-2,2]上任意兩個(gè)自變量的值x1,x2,
都有|f(x1)-f(x2)|≤|f(x)max-f(x)min|=4,所以c≥4.
所以c的最小值為4,
故答案為:4.

點(diǎn)評(píng) 此題重點(diǎn)考查了數(shù)學(xué)中等價(jià)轉(zhuǎn)化的思想把題意總轉(zhuǎn)化為求函數(shù)在定義域下的最值問題,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)是定義在R上的奇函數(shù),其導(dǎo)函數(shù)為f'(x),且x<0時(shí)2f(x)+xf'(x)<0恒成立,則a=f(1),b=2014f($\sqrt{2014}$),c=2015f($\sqrt{2015}$)的大小關(guān)系為( 。
A.c<b<aB.c<a<bC.a<c<bD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知等差數(shù)列{an},且a9=20,則S17=( 。
A.170B.200C.340D.360

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知以F為焦點(diǎn)的拋物線y2=2px(p>0)的準(zhǔn)線方程為x=-1,A、B、C為該拋物線上不同的三點(diǎn),且點(diǎn)B在x軸的下方,若|${\overrightarrow{FA}}$|、|${\overrightarrow{FB}}$|、|${\overrightarrow{FC}}$|成等差數(shù)列,且$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=0,則直線AC的方程為( 。
A.y=xB.y=x+1C.y=2x+1D.y=2x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(ex)=x+ex,g0(x)=gi-1′(x)(i=1,2,3,…),則g2016(ln2)=( 。
A.2016+ln8B.4032+ln4C.2016+21n2D.4032+ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an},{bn},其中{an}為等差數(shù),列,b1=a1=2,且a3為a2與a5-1的等比中項(xiàng),
(1)求an;
(2)對$n∈{N^*},{b_{n+1}}-{b_n}={3^n}{a_n}$,求bn(用n表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,PA⊥⊙O所在平面,AB是⊙O的直徑,C是⊙O上一點(diǎn),AE⊥PC,求證:AE⊥BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦點(diǎn)為F,左頂點(diǎn)為A,過點(diǎn)F作傾斜角為120°的直線l交橢圓的上半部分于點(diǎn)P,此時(shí)AP垂直PF,則橢圓C的離心率是$\frac{\sqrt{7}-1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知△ABC的周長為$\sqrt{2}$+1,且sin A+sin B=$\sqrt{2}$sin C,BC•AC=$\frac{1}{3}$,則$\overrightarrow{BC}$•$\overrightarrow{AC}$=$\frac{1}{6}$.

查看答案和解析>>

同步練習(xí)冊答案