8.已知某路口最高限速50km/h,電子監(jiān)控測(cè)得連續(xù)6輛汽車的速度如圖的莖葉圖(單位:km/h).若從中任取2輛,則恰好有1輛汽車超速的概率為( 。
A.$\frac{4}{15}$B.$\frac{2}{5}$C.$\frac{8}{15}$D.$\frac{3}{5}$

分析 求出基本事件的總數(shù),滿足題意的數(shù)目,即可求解概率.

解答 解:不同車速有6輛,從中任取2輛,共有C62=15.
則恰好有1輛汽車超速的數(shù)目:2×4=8.
從中任取2輛,則恰好有1輛汽車超速的概率為:$\frac{8}{15}$.
故選:C.

點(diǎn)評(píng) 本題考查古典概型的概率的求法,基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.如圖,根據(jù)圖中的數(shù)構(gòu)成的規(guī)律,a所表示的數(shù)是144.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.把一個(gè)大金屬球表面涂漆,共需油漆2.4公斤.若把這個(gè)大金屬球熔化制成64個(gè)大小都相同的小金屬球,不計(jì)損耗,將這些小金屬球表面都涂漆,需要用漆9.6公斤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知雙曲線C的中心在原點(diǎn),焦點(diǎn)在x軸上,若雙曲線C的一條漸近線的傾斜角等于60°,則雙曲線C的離心率等于( 。
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)函數(shù)f(x)=|x+1|
(I)若f(x)+f(x-6)≥m2+m對(duì)任意x∈R恒成立,求實(shí)數(shù)m的取值范圍
(Ⅱ)當(dāng)-1≤x≤4,求$\sqrt{f(x)}+\sqrt{f({2x-9})}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)離心率為$\frac{{2\sqrt{3}}}{3}$,F(xiàn)1(-2,0)、F2(2,0)為其兩個(gè)焦點(diǎn),點(diǎn)M是雙曲線上一點(diǎn),且∠F1MF2=60°,則△F1MF2的面積為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,甲船在A處,乙船在A處的南偏東45°方向,距A有4.5海里,并以10海里/小時(shí)的速度沿南偏西15°方向航行,若甲船以14海里/小時(shí)的速度航行,應(yīng)沿什么方向,用多少小時(shí)能盡快追上乙船?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知復(fù)數(shù)z滿足(1+2i)z=4+3i,則z的共軛復(fù)數(shù)是(  )
A.2-iB.2+iC.1+2iD.1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知向量$\overrightarrow m=(sin(ωx+\frac{π}{3}),-1),\overrightarrow n=(\sqrt{3},cos(ωx+\frac{π}{3}))(ω>0)$,函數(shù)f(x)=$\overrightarrow m•\overrightarrow n$圖象的對(duì)稱中心與對(duì)稱軸之間的最小距離為$\frac{π}{4}$.
(1)求ω的值,并求函數(shù)f(x)在區(qū)間[0,π]上的單調(diào)遞增區(qū)間;
(2)△ABC中,角A,B,C的對(duì)邊分別為a,b,c,f(A)=1,cosC=$\frac{3}{5}$,a=5$\sqrt{3}$,求b.

查看答案和解析>>

同步練習(xí)冊(cè)答案