17.任取$θ∈(0,\frac{3}{2}π)$,則使sinθ>0的概率是$\frac{2}{3}$.

分析 任取$θ∈(0,\frac{3}{2}π)$,使sinθ>0的θ∈(0,π),由此利用幾何概型能求出使sinθ>0的概率.

解答 解:∵任取$θ∈(0,\frac{3}{2}π)$,
∴使sinθ>0的θ∈(0,π),
∴使sinθ>0的概率是p=$\frac{π}{\frac{3}{2}π}$=$\frac{2}{3}$.
故答案為:$\frac{2}{3}$.

點(diǎn)評(píng) 本題考查概率的求法,涉及到三角函數(shù)、幾何概型等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.直三棱柱ABC-A1B1C1中,側(cè)棱長(zhǎng)為2,AC=BC=1,∠ACB=90°,D是A1B1的中點(diǎn),F(xiàn)是BB1上的動(dòng)點(diǎn),AB1,DF交于點(diǎn)E,要使AB1⊥平面C1DF,則線段B1F的長(zhǎng)為( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.7名師生站成一排照相留念,其中老師1人,男生4人,女生2人,在下列情況下,各有不同站法多少種?
(1)兩名女生必須相鄰而站;
(2)4名男生互不相鄰;
(3)若4名男生身高都不等,按從高到低的順序站;
(4)老師不站中間,女生不站兩端.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)$f(x)=\frac{{\sqrt{x+2}}}{{{2^x}-1}}$的定義域?yàn)椋ā 。?table class="qanwser">A.[-2,+∞)B.(-2,+∞)C.(-2,0)∪(0,+∞)D.[-2,0)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若i是虛數(shù)單位,則復(fù)數(shù)$z=\frac{{1-\sqrt{3}i}}{2i}$在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)位于( 。
A.第四象限B.第三象限C.第二象限D.第一象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=$\frac{2-cos[\frac{π}{4}(1-x)]+sin[\frac{π}{4}(1-x)]}{{x}^{2}+4x+5}$(-4≤x≤0),則f(x)的最大值為2+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知集合A=[-3,3],B=[-2,2],設(shè)M={(x,y)|x∈A,y∈B},在集合M內(nèi)隨機(jī)取出一個(gè)元素(x,y).
(1)求以(x,y)為坐標(biāo)的點(diǎn)落在圓x2+y2=4內(nèi)的概率;
(2)求以(x,y)為坐標(biāo)的點(diǎn)到直線x+y=0的距離不大于$\sqrt{2}$的概率.
(提示:可以考慮采用數(shù)形結(jié)合法)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在等差數(shù)列{an}中,已知a2=2,a4=4
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an
(Ⅱ)設(shè)bn=2${\;}^{{a}_{n}}$,求數(shù)列{bn}前n項(xiàng)的和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知f(x)是定義在R上的函數(shù),其導(dǎo)函數(shù)f'(x)滿足f'(x)<f(x)(x∈R),則( 。
A.f(2)>e2f(0),f(2001)>e2001f(0)B.f(2)<e2f(0),f(2001)>e2001f(0)
C.f(2)>e2f(0),f(2001)<e2001f(0)D.f(2)<e2f(0),f(2001)<e2001f(0)

查看答案和解析>>

同步練習(xí)冊(cè)答案