【題目】已知函數(shù),.
(1)若時(shí),求函數(shù)的最小值;
(2)若函數(shù)既有極大值又有極小值,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】試題分析:(1)代入,得,求導(dǎo),利用導(dǎo)函數(shù)判定函數(shù)的單調(diào)性,即可求得函數(shù)的最小值;
(2)現(xiàn)求導(dǎo)數(shù),函數(shù)既有極大值又有極小值,等價(jià)于有兩個(gè)零點(diǎn),可分和兩種情況分類(lèi)討論,得到函數(shù)的單調(diào)性和極值,得到函數(shù)有極大值和極小值的條件,即可求解實(shí)數(shù)的取值范圍.
試題解析:
(1)當(dāng)時(shí),,定義域?yàn)?/span>.
,令,可得.
列表:
- | 0 | + | |
極小值 |
所以,函數(shù)的最小值為.
(2),定義域?yàn)?/span>,.
記,,,
①當(dāng)時(shí),,在上單調(diào)遞增,
故在上至多有一個(gè)零點(diǎn),
此時(shí),函數(shù)在上至多存在一個(gè)極小值,不存在極大值,不符題意;
②當(dāng)時(shí),令,可得,列表:
+ | 0 | - | |
極大值 |
若,即,,即,
故函數(shù)在上單調(diào)遞減,函數(shù)在上不存在極值,與題意不符,
若,即時(shí),
由于,且 ,
故存在,使得,即,
且當(dāng)時(shí),,函數(shù)在上單調(diào)遞減;
當(dāng)時(shí),,函數(shù)在上單調(diào)遞增,函數(shù)在處取極小值.
由于,且 (事實(shí)上,令, ,故在上單調(diào)遞增,所以).
故存在,使得,即,
且當(dāng)時(shí),,函數(shù)在上單調(diào)遞增;
當(dāng)時(shí),,函數(shù)在上單調(diào)遞減,函數(shù)在處取極大值.
綜上所述,當(dāng)時(shí),函數(shù)在上既有極大值又有極小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,且過(guò)點(diǎn).
(Ⅰ)求橢圓的方程.
(Ⅱ)若, 是橢圓上兩個(gè)不同的動(dòng)點(diǎn),且使的角平分線垂直于軸,試判斷直線的斜率是否為定值?若是,求出該值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)的一段圖象如圖所示
(1)求的解析式;
(2)求的單調(diào)增區(qū)間,并指出的最大值及取到最大值時(shí)的集合;
(3)把的圖象向左至少平移多少個(gè)單位,才能使得到的圖象對(duì)應(yīng)的函數(shù)為偶函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中, 平面, ,點(diǎn)是中點(diǎn).
(1)求證: ;
(2)若, , ,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】4月23日是“世界讀書(shū)日”,某中學(xué)在此期間開(kāi)展了一系列的讀書(shū)教育活動(dòng).為了解高三學(xué)生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個(gè)小組中隨機(jī)抽取10名學(xué)生參加問(wèn)卷調(diào)查.各組人數(shù)統(tǒng)計(jì)如下:
(1)從參加問(wèn)卷調(diào)查的10名學(xué)生中隨機(jī)抽取兩名,求這兩名學(xué)生來(lái)自同一個(gè)小組的概率;
(2)在參加問(wèn)卷調(diào)查的10名學(xué)生中,從來(lái)自甲、丙兩個(gè)小組的學(xué)生中隨機(jī)抽取兩名,用表示抽得甲組學(xué)生的人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中, 平面,,以為鄰邊作平行四邊形,連接.
(1)求證:平面;
(2)若二面角為.
求證:平面平面;
求直線與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線的方程為,拋物線:的焦點(diǎn)為,點(diǎn)是拋物線上到直線距離最小的點(diǎn).
(1)求點(diǎn)的坐標(biāo);
(2)若直線與拋物線交于兩點(diǎn),為中點(diǎn),且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)結(jié)論中正確的個(gè)數(shù)是
(1)對(duì)于命題使得,則都有;
(2)已知,則
(3)已知回歸直線的斜率的估計(jì)值是2,樣本點(diǎn)的中心為(4,5),則回歸直線方程為;
(4)“”是“”的充分不必要條件.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等差數(shù)列的公差不為0,是其前項(xiàng)和,給出下列命題:
①若,且,則和都是中的最大項(xiàng);
②給定,對(duì)一切,都有;
③若,則中一定有最小項(xiàng);
④存在,使得和同號(hào).
其中正確命題的個(gè)數(shù)為( )
A.4B.3C.2D.1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com