A. | (1,2) | B. | (2,1+$\sqrt{2}$) | C. | ($\frac{1}{2}$,1) | D. | (1+$\sqrt{2}$,+∞) |
分析 根據(jù)雙曲線的對稱性,得到等腰△ABE中,∠AEB為銳角,可得|AF|<|EF|,將此式轉(zhuǎn)化為關(guān)于a、c的不等式,化簡整理即可得到該雙曲線的離心率e的取值范圍.
解答 解:根據(jù)雙曲線的對稱性,得
△ABE中,|AE|=|BE|,
△ABE是銳角三角形,即∠AEB為銳角,
由此可得Rt△AFE中,∠AEF<45°,
得|AF|<|EF|
∵|AF|=$\frac{^{2}}{a}$=$\frac{{c}^{2}-{a}^{2}}{a}$,|EF|=a+c,
∴$\frac{{c}^{2}-{a}^{2}}{a}$<a+c,即2a2+ac-c2>0,
兩邊都除以a2,得e2-e-2<0,解之得-1<e<2,
∵雙曲線的離心率e>1,
∴該雙曲線的離心率e的取值范圍是(1,2)
故選:A.
點評 本題給出雙曲線過一個焦點的通徑與另一個頂點構(gòu)成銳角三角形,求雙曲線離心率的范圍,著重考查了雙曲線的標準方程與簡單幾何性質(zhì)等知識,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | 2 | C. | $\frac{5}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①和③ | B. | ①和② | C. | ①和④ | D. | ③和④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
獎品 收費(元/件) 工廠 | 一等獎獎品 | 二等獎獎品 |
甲 | 500 | 400 |
乙 | 800 | 600 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-2<x<1} | B. | {x|x<-2或x≥3} | C. | {x|-2<x≤1} | D. | {x|-2<x<3且x≠1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1+$\sqrt{2}$ | B. | 2+$\sqrt{2}$ | C. | 1+2$\sqrt{2}$ | D. | 2+2$\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com