設(shè)實(shí)數(shù)a,b滿足
3a-2b+1≥0
3a+2b-4≥0
a≤1
,則9a2+4b2的最小值為
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:計(jì)算題,作圖題,不等式的解法及應(yīng)用
分析:令3a=x,2b=y,化
3a-2b+1≥0
3a+2b-4≥0
a≤1
x-y+1≥0
x+y-4≥0
x≤3
,9a2+4b2=x2+y2,作出平面區(qū)域,用幾何意義求解.
解答: 解,令3a=x,2b=y,則
3a-2b+1≥0
3a+2b-4≥0
a≤1
可化為
x-y+1≥0
x+y-4≥0
x≤3
,9a2+4b2=x2+y2;
作出平面區(qū)域如下:

則9a2+4b2=x2+y2可看成陰影內(nèi)的點(diǎn)與點(diǎn)A的距離的平方;
∵點(diǎn)A與陰影內(nèi)的點(diǎn)的距離的最小值為2
2
,
則9a2+4b2=x2+y2的最小值為8.
點(diǎn)評(píng):本題考查了線性規(guī)劃的處理方法,用到換元法,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x<0,求函數(shù)y=2-x-
4
x
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和Sn滿足2kSn-(2k+1)Sn-1=2k(常數(shù)k>0,n=2,3,4,…)
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)設(shè)數(shù)列{an}的公比為f(k),作數(shù)列{bn},使b1=3,bn=f(
1
bn-1
)(n=2,3,4,…)求數(shù)列{bn}的通項(xiàng)公式;
(3)設(shè)cn=bn-2,若存在m∈N*,使
lim
n→∞
(cmcm+1+cm+1cm+2+…+cncn+1)<
1
2007
,試求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1og2x,x≥1
x2-x,x<1
,則滿足f(a)>2的a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinx+
3
cosx,x∈R.
(1)求f(x)的最小正周期;
(2)若f(θ)=
6
5
,θ∈(0,π),求tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列4組函數(shù):①y=x2;②y=2x;③y=log2x;④y=2x那個(gè)函數(shù)增長(zhǎng)速度最快
 
(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-2x-3<0},B={x|x2+(a+1)x+2a<0}且滿足A?B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足(n-1)an+1=(n+1)(an-1)且a2=6,求{an}通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為一次函數(shù),且y隨x值增大而增大,若f[f(x)]=4x+6,f(x)的解析式
 

查看答案和解析>>

同步練習(xí)冊(cè)答案