15.已知拋物線C:y2=-4x的焦點(diǎn)為F,A(-2,1),P為拋物線C上的動(dòng)點(diǎn),則|PF|+|PA|的最小值為3.

分析 設(shè)點(diǎn)P在準(zhǔn)線上的射影為D,由拋物線的定義把問(wèn)題轉(zhuǎn)化為求|PD|+|PA|的最小值,同時(shí)可推斷出當(dāng)D,P,A三點(diǎn)共線時(shí)|PD|+|PA|最小,答案可得.

解答 解:設(shè)點(diǎn)A在準(zhǔn)線上的射影為D,A(-2,1)在拋物線內(nèi)部,
由拋物線的定義可知|PF|=|PD|,拋物線C:y2=-4x,
p=1,
∴要求|PF|+|PA|的最小值,即求|PD|+|PA|的最小值,
只有當(dāng)D,P,A三點(diǎn)共線時(shí)|PD|+|PA|最小,且最小值為1-(-2)=3  (準(zhǔn)線方程為x=1)
故答案為:3.

點(diǎn)評(píng) 本題考查拋物線的定義、標(biāo)準(zhǔn)方程,以及與之有關(guān)的最值問(wèn)題,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.執(zhí)行如圖所示的程序框圖,則輸出y的值為( 。
A.5B.11C.23D.47

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若$\sqrt{2}$sin($\frac{π}{4}$-θ)+2=4cos2($\frac{π}{4}$-$\frac{θ}{2}$),則tanθ=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=log3x,x0∈[1,27],則不等式1≤f(x0)≤2成立的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{3}{13}$D.$\frac{2}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知過(guò)點(diǎn)A(-4,0)作動(dòng)直線m與拋物線G:x2=2py(p>0)相交于B、C兩點(diǎn).
(1)當(dāng)直線的斜率是$\frac{1}{2}$時(shí),$\overrightarrow{AC}$=4$\overrightarrow{AB}$,求拋物線G的方程;
(2)設(shè)B、C的中點(diǎn)是M,利用(1)中所求拋物線,試求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知$\overrightarrow{AB}$=$\overrightarrow{a}$+5$\overrightarrow$,$\overrightarrow{BC}$=-2$\overrightarrow{a}$+8$\overrightarrow$,$\overrightarrow{CD}$=λ($\overrightarrow{a}$-$\overrightarrow$),且A、B、D三點(diǎn)共線,則λ的值為( 。
A.3B.-3C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.直線4x+2y=1的斜率為( 。
A.-3B.3C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.函數(shù)f(x)=k•ax-a-x(a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(Ⅰ)求k的值;
(Ⅱ)討論不等式f(x2+x)+f(2x-4)<0的解集;
(Ⅲ)若$f(1)=\frac{8}{3}$,且g(x)=a2x+a-2x-2m•f(x)+2在[1,+∞)恒為正,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知f(x)=loga(1+x)+loga(3-x)(a>0且a≠1),其中f(1)=2.
(1)求a的值以及f(x)的定義域;
(2)求f(x)在區(qū)間[0,$\frac{3}{2}$]上的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案