P是雙曲線的右支上一動點,F(xiàn)是雙曲線的右焦點,已知A(3,1),則|PA|+|PF|的最小值為   
【答案】分析:設(shè)雙曲線左焦點為F2,根據(jù)雙曲線的定義可知|PA|+|PF|=|PF2|-2a+|PA|,進而可知當P、F2、A三點共線時有最小值,根據(jù)雙曲線方程可求的F2的坐標,此時|PF2|+|PA|=|AF2|,利用兩點間的距離公式求得答案.
解答:解:設(shè)雙曲線左焦點為F2,則|PA|+|PF|=|PF2|-2a+|PA|=
當P、F2、A三點共線時有最小值,此時F2(-2,0)、A(3,1)所以
|PF2|+|PA|=|AF2|=,而對于這個雙曲線,2a=2,
所以最小值為-2
故答案為-2
點評:本題主要考查了雙曲線的應用.解題的過程靈活運用了雙曲線的定義和用數(shù)形結(jié)合的方法解決問題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2010-2011學年四川省成都市高三三診模擬考試文科數(shù)學 題型:填空題

.已知P是雙曲線的右支上一點,A1, A2分別為雙曲線的左、右頂點,F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點,雙曲線的離心率為,有下列命題:

    ①雙曲線的一條準線被它的兩條漸近線所截得的線段長度為;

    ②若

    ③的內(nèi)切圓的圓心橫坐標為;

    ④若直線PF1的斜率為

    其中正確的命題的序號是           。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年四川省高三第三次模擬考試(理) 題型:填空題

已知P是雙曲線的右支上一點,A1,A2分別為雙曲線的左、右頂點,F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點,雙曲線的離心率為e,有下列命題:

    ①雙曲線的一條準線被它的兩條漸近線所截得的線段長度為

②若,則e的最大值為

的內(nèi)切圓的圓心橫坐標為a;

④若直線PF1的斜率為k,則

其中正確的命題的序號是                  .

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011年四川省成都市石室中學高考數(shù)學三模試卷(文科)(解析版) 題型:填空題

已知P是雙曲線的右支上一點,A1,A2分別為雙曲線的左、右頂點,F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點,雙曲線的離心率為e,有下列命題:①雙曲線的一條準線被它的兩條漸近線所截得的線段長度為;
②若|PF1|=e|PF2|,則e的最大值為;③△PF1F2的內(nèi)切圓的圓心橫坐標為a;④若直線PF1的斜率為k,則e2-k2>1,其中正確命題的序號是   

查看答案和解析>>

科目:高中數(shù)學 來源:2007年北京市石景山區(qū)高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

已知P是雙曲線的右支上一點,A1,A2分別為雙曲線的左、右頂點,F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點,雙曲線的離心率為e,有下列命題:
①雙曲線的一條準線被它的兩條漸近線所截得的線段長度為;
②若|PF1|=e|PF2|,則e的最大值為;
③△PF1F2的內(nèi)切圓的圓心橫坐標為a;
其中正確命題的序號是   

查看答案和解析>>

科目:高中數(shù)學 來源:2007年北京市石景山區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

已知P是雙曲線的右支上一點,A1,A2分別為雙曲線的左、右頂點,F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點,雙曲線的離心率為e,有下列命題:
①雙曲線的一條準線被它的兩條漸近線所截得的線段長度為
②若|PF1|=e|PF2|,則e的最大值為;
③△PF1F2的內(nèi)切圓的圓心橫坐標為a;
其中正確命題的序號是   

查看答案和解析>>

同步練習冊答案