【題目】已知圓經(jīng)過,,三點.
(1)求圓的標準方程;
(2)若過點N 的直線被圓截得的弦AB的長為,求直線的傾斜角.
【答案】(1) (2) 30°或90°.
【解析】
(1)解法一:將圓的方程設為一般式,將題干三個點代入圓的方程,解出相應的參數(shù)值,即可得出圓的一般方程,再化為標準方程;
解法二:求出線段和的中垂線方程,將兩中垂線方程聯(lián)立求出交點坐標,即為圓心坐標,然后計算為圓的半徑,即可寫出圓的標準方程;
(2)先利用勾股定理計算出圓心到直線的距離為,并對直線的斜率是否存在進行分類討論:一是直線的斜率不存在,得出直線的方程為,驗算圓心到該直線的距離為;
二是當直線的斜率存在時,設直線的方程為,并表示為一般式,利用圓心到直線的距離為得出關于的方程,求出的值。結合前面兩種情況求出直線的傾斜角。
(1)解法一:設圓的方程為,
則 ∴
即圓為,
∴圓的標準方程為;
解法二:則中垂線為,中垂線為,
∴圓心滿足∴,
半徑,
∴圓的標準方程為.
(2)①當斜率不存在時,即直線到圓心的距離為1,也滿足題意,
此時直線的傾斜角為90°,
②當斜率存在時,設直線的方程為,
由弦長為4,可得圓心 到直線的距離為,
,
∴,此時直線的傾斜角為30°,
綜上所述,直線的傾斜角為30°或90°.
科目:高中數(shù)學 來源: 題型:
【題目】在一次抽樣調(diào)查中測得樣本的6組數(shù)據(jù),得到一個變量關于的回歸方程模型,其對應的數(shù)值如下表:
2 | 3 | 4 | 5 | 6 | 7 | |
(1)請用相關系數(shù)加以說明與之間存在線性相關關系(當時,說明與之間具有線性相關關系);
(2)根據(jù)(1)的判斷結果,建立關于的回歸方程并預測當時,對應的值為多少(精確到).
附參考公式:回歸方程中斜率和截距的最小二乘法估計公式分別為:
,,相關系數(shù)公式為:.
參考數(shù)據(jù):
,,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩人各射擊一次,擊中目標的概率分別是和.假設兩人射擊是否擊中目標,相互之間沒有影響;每次射擊是否擊中目標,相互之間沒有影響.
(1)求甲射擊4次,至少1次未擊中目標的概率;
(2)求兩人各射擊4次,甲恰好擊中目標2次且乙恰好擊中目標3次的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線與曲線交于兩點.
(1)求直線l的普通方程和曲線的直角坐標方程;
(2)已知點的極坐標為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了鼓勵市民節(jié)約用電,實行“階梯式”電價,某邊遠山區(qū)每戶居民月用電量劃分為三檔:月用電量不超過150度,按0.6元/度收費,超過150度但不超過250度的部分每度加價0.1元,超過250度的部分每度再加價0.3元收費.
(1)求該邊遠山區(qū)某戶居民月用電費用(單位:元)關于月用電量(單位:度)的函數(shù)解析式;
(2)已知該邊遠山區(qū)貧困戶的月用電量(單位:度)與該戶長期居住的人口數(shù)(單位:人)間近似地滿足線性相關關系:(的值精確到整數(shù)),其數(shù)據(jù)如表:
14 | 15 | 17 | 18 | |
161 | 168 | 191 | 200 |
現(xiàn)政府為減輕貧困家庭的經(jīng)濟負擔,計劃對該邊遠山區(qū)的貧困家庭進行一定的經(jīng)濟補償,給出兩種補償方案供選擇:一是根據(jù)該家庭人數(shù),每人每戶月補償6元;二是根據(jù)用電量每人每月補償(為用電量)元,請根據(jù)家庭人數(shù)分析,一個貧困家庭選擇哪種補償方式可以獲得更多的補償?
附:回歸直線中斜率和截距的最小二乘法估計公式分別為:
,.
參考數(shù)據(jù):,,,,,,,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學將100名高一新生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A,B兩種不同的教學方式分別在甲、乙兩個班進行教改實驗.為了了解教學效果,期末考試后,陳老師對甲、乙兩個班級的學生成績進行統(tǒng)計分析,畫出頻率分布直方圖(如下圖).記成績不低于90分者為“成績優(yōu)秀”.
根據(jù)頻率分布直方圖填寫下面2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為:“成績優(yōu)秀”與教學方式有關.
甲班(A方式) | 乙班(B方式) | 總計 | |
成績優(yōu)秀 | |||
成績不優(yōu)秀 | |||
總計 |
附:K2=.
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在等差數(shù)列{an}中,2a9=a12+13,a3=7,其前n項和為Sn.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{}的前n項和Tn,并證明Tn<.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是函數(shù)的導函數(shù)的圖象,給出下列命題:
①-2是函數(shù)的極值點;
②是函數(shù)的極值點;
③在處取得極大值;
④函數(shù)在區(qū)間上單調(diào)遞增.則正確命題的序號是
A. ①③ B. ②④ C. ②③ D. ①④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】假設每天從甲地去乙地的旅客人數(shù)X是服從正態(tài)分布N(800,502)的隨機變量.記一天中從甲地去乙地的旅客人數(shù)不超過900的概率為p0 .
(1)求p0的值;
(參考數(shù)據(jù):若X~N(μ,σ2),有P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.)
(2)某客運公司用A,B兩種型號的車輛承擔甲、乙兩地間的長途客運業(yè)務,每車每天往返一次,A,B兩種車輛的載客量分別為36人和60人,從甲地去乙地的營運成本分別為1600元/輛和2400元/輛.公司擬組建一個不超過21輛車的客運車隊,并要求B型車不多于A型車7輛.若每天要以不小于p0的概率運完從甲地去乙地的旅客,且使公司從甲地去乙地的營運成本最小,那么應配備A型車、B型車各多少輛?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com