對各項均為正整數(shù)的數(shù)列{an},若存在正整數(shù)m和各項均為整數(shù)的數(shù)列{bn},滿足
(1)0≤bn<m;
(2)m是an-bn的約數(shù);
(3)存在正整數(shù)T,使得bn+T=bn對所有n∈N*恒成立.
則稱數(shù)列{an}為模周期數(shù)列,其中數(shù)列{bn}稱為數(shù)列{an}的模數(shù)列,T叫做數(shù)列{bn}的周期.已知數(shù)列{an}是模周期數(shù)列,且滿足:a1=1,an+1=2an+1,若m=10,則一個可能的T=
 
考點:數(shù)列的應用
專題:點列、遞歸數(shù)列與數(shù)學歸納法
分析:直接計算出前幾項的值,即可得出結果.
解答: 解:∵a1=1,an+1=2an+1,
∴a2=3,a3=7,a4=15,a5=31,
a6=63,a7=127,a8=255,…
由題可知b1=1,b2=3,b3=7,b4=5,
b5=1,b6=3,b7=7,b8=5,…
顯然T=4k (k∈N*).
點評:本題考查數(shù)列知識,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

5個人負責一個社團的周一至周五的值班工作,每人1天,若甲同學不值周一,乙同學不值周五,且甲,乙不相鄰的概率是
 
?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設正方體ABCD-A1B1C1D1的棱長為1,則:
(1)A點到CD1的距離為
 

(2)A點到BDD1B1的距離為
 
;
(3)A點到面A1BD的距離為
 

(4)AA1與面BB1D1D的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1=2,Sn為數(shù)列{an}的前n項和,且Sn=nan-(n2-n)
(1)求{an}通項公式.
(2)若數(shù)列{an}滿足bn+1-bn=2an+3,且b1=3,{
1
bn
}的前n項和Tn,試證明Tn
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}(n∈N*,1≤n≤46)滿足a1=a,an+1-an=
d,1≤n≤15
1,16≤n≤30
1
d
,31≤n≤45
其中d≠0,n∈N*
(1)當a=1時,求a46關于d的表達式,并求a46的取值范圍;
(2)設集合M={b|b=ai+aj+ak,i,j,k∈N*,1≤i<j<k≤16}.
①若a=
1
3
,d=
1
4
,求證:2∈M;
②是否存在實數(shù)a,d,使
1
8
,1,
53
40
都屬于M?若存在,請求出實數(shù)a,d;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-2
3
sin2x+sin2x+
3

(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)f(x)在[-
π
2
,0]
上的最值及取得最值時自變量x的取值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在如圖所示的多面體中,四邊形ABB1A1和ACC1A1都為矩形.AA1=1,AC=
2
,AB=2,設D,E分別是線段BC,CC1的中點.
(1)若AC⊥BC,證明:直線BC⊥平面ACC1A1;
(2)設點M為線段AB的中點,證明:直線DE∥平面A1MC;
(3)在(1)條件下,求點D到平面A1B1E1的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
xlnx
x+1
和直線l:y=m(x-1).
(1)當曲線y=f(x)在點(1,f(1))處的切線與直線l垂直時,求原點O到直線l的距離;
(2)若對于任意的x∈[1,+∞),f(x)≤m(x-1)恒成立,求m的取值范圍;
(3)求證:ln
42n+1
n
i=1
i
4i2-1
(n∈N+

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方形ABCD內(nèi)作內(nèi)切圓O,將正方形ABCD、圓O繞對角線AC旋轉一周得到的兩個旋轉體的體積依次記為V1,V2,則V1:V2=( 。
A、2:
3
B、2
2
:3
C、2:
3
D、
2
:1

查看答案和解析>>

同步練習冊答案